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The Seebeck coefficient, or thermoelectric power, is a key physical parameter that quantifies the voltage gen-
erated in response to a temperature gradient across a material. Accurate evaluation of this coefficient is essen-
tial in order to optimize the performance of thermoelectric devices. This study proposes a theoretical ap-
proach to the analytical determination of the Seebeck coefficient in semiconductors, based on the Fermi—
Dirac statistical approximation. The model incorporates the temperature dependence of the Fermi level,
which introduces an intrinsic gradient along the thermoelectric structure under non-equilibrium thermal con-
ditions. This framework enables a more precise understanding of the interplay between the carrier distribu-
tion, energy levels, and temperature variation. The analytical expressions obtained here show good agreement
with the results of numerical methods, and offer significant advantages in terms of modeling and designing
high-performance thermoelectric materials. The proposed approach proves to be an efficient and insightful
tool for theoretical investigations and optimization studies in semiconductor thermoelectrics.
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Introduction

Thermoelectric effects, which are primarily quantified by the Seebeck coefficient, involve direct inter-
conversion between thermal and electrical energy in a material system. The Seebeck effect refers to a phe-
nomenon where a temperature gradient established along a thermoelectric material induces an electric poten-
tial difference, and vice versa, and this forms the foundational principle behind thermoelectric generators and
coolers [1-7]. The efficiency of these energy conversion processes is strongly governed by the magnitude
and behavior of the Seebeck coefficient indifferent materials and temperature regimes.

In semiconductors and complex materials, the Seebeck coefficient is particularly sensitive to micro-
scopic interactions involving charge carriers. These include carrier—carrier, carrier—phonon, and in the case
of magnetic semiconductors, carrier—localized magnetic moment interactions. Such interactions can signifi-
cantly alter the distribution function of carriers, leading to notable changes in the thermoelectric response.
For example, scattering mechanisms impose constraints on the final states that carriers can occupy, often re-
sulting in a reduction of the Seebeck coefficient due to the suppression of entropy transport per carrier [8, 9].

The Seebeck coefficient is not solely a material constant, and is closely associated with the carrier con-
centration, effective mass, and temperature, all of which affect the position and dynamics of the Fermi level.
In degenerate or heavily doped semiconductors in particular, where classical (Boltzmann) statistics become
insufficient, a quantum-statistical approach becomes necessary. The Fermi—Dirac distribution provides a
more accurate description of carrier occupancy in such systems, and is essential in order to capture realistic
transport behavior [10, 11]. The Gaussian density of states (DOS) approximation is also widely used to mod-
el disordered or amorphous semiconductors and organic materials, in which the electronic states are not
sharply defined due to substantial energetic disorder. Unlike crystalline semiconductors, which have well-
defined band structures derived from periodic Bloch states, disordered systems lack long-range structural order.
This absence of periodicity results in localized electronic states with broadened energy levels, due to variations
in the local environment such as structural distortions or fluctuations in molecular orientation [12—14].

In this study, we present an analytical approach for evaluating the Seebeck coefficient in semiconduct-
ing materials within the framework of a Gaussian DOS and the Fermi—Dirac statistical approximation. The
use of the Gaussian approximation for the DOS is physically justified in systems where energetic disorder
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dominates, such as amorphous and organic semiconductors. In these materials, the absence of long-range
order leads to a broadening of the electronic energy levels, which can be effectively modeled by a Gaussian
distribution. This approximation is commonly accepted for disordered systems, including amorphous silicon,
disordered metal oxides, and organic semiconductors, where localized states and site-to-site energy fluctua-
tions govern the charge transport [ 15—18]. To incorporate the temperature dependence of the chemical poten-
tial (Fermi level), we used a numerical method in Mathematica 10.0 that is valid across both non-degenerate
and degenerate regimes. This theoretical framework enables improved insight into the thermoelectric proper-
ties of materials without relying solely on numerical simulations. The analytical results obtained here
demonstrate the reliability and applicability of the proposed method for thermoelectric modeling.

Proposed Method and Formulae

An analytical formula was proposed in [19-23] for the calculation of the Seebeck coefficient, as pre-
sented below:

j ff(E T)(1- f(E,T)N(E)E , (1)

where o is the electrical conductivity, T is the scattering time, L* = 5(18)2 is the scattering distance (mean

free path), N(E) is the DOS, which can be represented by a Gaussian function, and f(£) is the Fermi—Dirac
distribution function. These quantities are defined as follows [20]:
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where the energy Ej is defined as the center of the Gaussian distribution, Ny is the total concentration of en-
ergetic states, and 9 is the width of the distribution. Substituting Egs. (2) and (3) into Eq. (1) gives the fol-
lowing expression:

e’ N, ]" 1 1 I(E E“T
- - (E-E,))e’ dE 4)
2 / E-E, E- E b
oTkT 27t8’°°1+e i l+e

where o is the conductivity of the material. Eq. (4) can be expressed in the following form:
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Due to the complexity of Eq. (6), the derivation of a closed-form analytical expression is highly chal-
lenging; it is therefore expressed as a sum of simpler integrals, in the following form:

Q(kaSaT:Efan):L(k96aT>E )+M(k d T, f ))—R(k,S,T,Ef,EO)—K(k,S,T,Ef,EO), (7)
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As an be seen from Eq. (5), the determination of the Seebeck coefficient depends on the accurate evalu-
ation of Eqs. (8)—(11). To derive ananalytical expression from Eqgs. (8)—(11), the binomial expansion theorem
and the exponential series expansion are employed, as follows [24, 25]:

: =§(ﬂy’lf—; (12)

i=0
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and
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where f, (n) are binomial coefficients defined by:

1

Sulm)=—TT74 (1=1). (14)

By substituting Egs. (12) and (13) into Egs. (8)—(10), a general analytical expression for

L(k,5,T, f,E),M(k,S,T,E ,E,) and R(k,9,T, f,E)canbederivedasfollows:
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where the parameters Nand N’ are the upper limits of the summations. The quantities I'(x) and
Erfc(x) are defined as follows:

I'(x)= Tt""e”dt , (21)

Erfe(x) = %Te dr. (22)

Note that the functions K(k,8,7,E,,E,) and H, (k,T,E,) are computed using numerical integration
techniques.
Numerical Results and Discussion

As can be seen from the preceding equations, accurate determination of the Seebeck coefficient S re-
quires evaluation of the integral given in Eq. (5). However, due to the mathematical complexity introduced
by the Gaussian distribution and Fermi—Dirac statistics, obtaining a general closed-form analytical solution
for the integral in Eq. (5) remains a significant challenge. In the present study, Eq. (5) was evaluated both
analytically, using the derived expression in Eq. (7), and numerically, using the Mathematica 10.0 software
package. A numerical integration technique was employed to compute the Seebeck coefficient accurately
over a wide temperature range. Figure shows a graph of the Seebeck coefficient as a function of temperature.
The results obtained from both the analytical formula in Eq. (5) and the numerical calculations are shown on
the graph, which clearly illustrates the temperature-dependent behavior of the Seebeck coefficient; there is-
consistency between the two methods, thus validating the reliability of the proposed approach. In Figure, the
black dashed curve represents the numerically calculated Seebeck coefficient, whereas the red solid curve
depicts the values derived analytically using Eq. (5), and it can be seen that there is good agreement between

them. The calculations were performed based on the parameters in Eq. (6) with values of
2

e=1.602x10"°C, I ~0.864x 10" =, 1 ~107" 5 [24], 6 ~10° Qma N, =107 m>[15]. As shown in
S

Figure, the desired level of precision was achieved when the series was truncated at values for the upper limit
of N=N'=30.

Table presents the partial sums corresponding to progressively increasing upper summation limits N in
Eq. (8). Higher accuracy can be readily achieved by increasing the upper-term limits in the series expansions
of Egs. (10)—(12). The dependence of the Seebeck coefficient on temperature, which arises from the thermal
broadening of the Fermi—Dirac distribution and the temperature-dependent behavior of the density of states,
was systematically analyzed. The results of the numerical simulations show good agreement with the analyt-
ical expression given in Eq. (5), thus validating the accuracy of the proposed approach. These results not on-
ly validate the applicability of the numerical method but also demonstrate that the proposed approach cap-
tures the essential physics governing thermoelectric transport. It also provides a practical framework for fur-
ther theoretical studies or the experimental design of semiconductor-based thermoelectric devices.
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Conclusion

In this study, a novel analytical expression for the Seebeck coefficient was derived using the binomial
expansion theorem and the exponential series expansion. As can be seen from Figure and Table, the general
analytical expressions for the Seebeck functions obtained through the applied method exhibit strong con-
sistency with the theoretical framework of the proposed approach. This agreement confirms the validity and
accuracy of the analytical methodology used to derive the Seebeck coefficients.
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Figure. Variation in the S Seebeck coefficient with respect to 7 temperature
(where £, =25 eV, E;=32¢€V, k= 8.617x107° eV-K ™, §=12¢eV)

Table

Convergence of the derived expression for Q(k, 6, T, Ef, Eo) as a function of summation limits NV = N’
(for E, =8.2 eV, E, =4.63¢V, k=8.617x10" eV-K™, 6=1.5¢V)

N Eq. (5)

10 —0.000100960026019
20 —0.000101693247456
30 —0.0001018524517281
40 —0.0001019115964974
50 —0.0001019398713466
60 —0.0001019554937334
70 —0.0001019565058798
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Anam Akkymn

®epMmu-/lUpak KYbIKTAYbIH NAHIATAHBIIT
3ee0ex K03 PUIUEHTIH AHAJTNTHKAJIBIK AHBIKTAYbI

3ecOek k0 HULMEHTI HeMece TEPMOAJIEKTPIIIK KyaT — OyJ1 MaTepHall OOHbIHIIA TeMIepaTypa rpajiueHTiHe
JKayan peTiHze maiina OonaThlH KepHEYIi CaHABIK TYPHAE aHBIKTAMTBIH HEri3ri (pHU3MKaIbIK mapamerp. byn
KOO(GGUIMEHTTI o7 aHBIKTay TEPMOAJIEKTPIIK KYPBUIFBUIAPABIH OHIMIUIIIH OHTAHIaHABIPY YIIIH KaXKeT.
3eprreyne mamamen ®epmu-/{upak omiciHe HerizaenreH KapThulail eTkisrimTepaeri 3eb6ex ko3 GHUIHeHTIH
AQHAINTHKAIBIK aHBIKTAyFa TEOPHSUIBIK TociIgl ycbiHanel. Monens PepMmu aeHrediHiH Temmeparypara
TOYENAUIIriH ecKepesi, Oyl Teme-TeHMIKCI3 JKbUTy JKarAaibIHIa TepPMOUIEKTPIIK KYpPBUIBIM OOMBIMEH iIIki
IPaJMeHTTIH Maiga OoyslHa oKeneai. byl Mozens TachIManAayIIbIHBIH Tapalybl, SHEPTUs JeHrelnepi MeH
TeMIIepaTypaHblH 63repyi apachlHAAFbl ©3apa OalIaHBICTHI JJMIPeK TYCIHyre MYMKIHIIK Oepeni. AJbIHFaH
AQHATIMTUKAIIBIK OPHEKTEP CAHBIK JiCTEPiH HOTMKEIEPIMEH JKaKChl COMKeC Kelnell )KOHEe OHIMIUTIITT JKOFaphl
TEPMODJIEKTPIIIK MaTepHalgapAbl MOJAENBACYMEH XobOanayna apTHIKIIBUIBIKTap Oepeni. ¥ CHIHBUIFAH TOCLI
JKAPTBUIAH OTKI3TIII TEPMOAIEKTPHKA CaJlaChIHIAFBl TEOPUSUIBIK 3epPTTEyJiep MEH OHTAMIaHABIPYABIH THIMII
’KSHE aKMapaTTHIK KYpaJIbl.

Kinm ce30ep: 3eebex koddHUIMEHTI, TEPMOIIIEKTPIIK KyaT, *KapThutaid oTkisrinr, ®epmu-/Iupak Tocini
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Anam Akky1l

006 anaauTHYecKOM onpeneneHun ko3ppunuenrta 3eedexa
¢ HCNoJb30BaHueM npudankenus Pepmu—/Aupaka

Koadpdurment 3eebexa WM TEPMOUISKTPOABIDKYIIAS CHIIA, SBISIETCS BaXKHBIM (PU3MYECKUM MapameTpoM,
KOTOPBIA KOJMYECTBEHHO ONKCHIBACT HANPSDKEHHE, BO3HHUKAIONIEEe B OTBET HAa TEMIEPATYPHBIN IPalUeHT B
Marepuane. TouHoe ompeneneHHe 3Toro kod(¢unueHTa HEOOXOANMO AT ONTHUMU3AIUH XapaKTEePHUCTHK
TEPMORJIEKTPUUECKUX yCTPOICTB. B HacTosIMIIEM HCCIeJOBaHNH NPEUIaraeTcst TCOPETHIECKHi MOIX0 ] K aHa-
JUTHYECKOMY OIpesieNieHuIo ko3 punuenTa 3eebeka B IOMYNPOBOJHAKAX Ha OCHOBE MPUOIIKEHHOTO METO-
na depmu—/lupaka. Mozaenp yuuThIBaeT TEMIEpPaTypHYIO 3aBUCHUMOCTh YpOBHS (DepMmu, 4TO NPHUBOAUT K
BO3HMKHOBEHUIO BHYTPEHHETO I'PaJIMCHTa BIOJb TEPMOIIEKTPUUECKON CTPYKTYpbl B HEPAaBHOBECHBIX TEILIO-
BBIX YCJIOBHAX. DTa MOJENb M03BOJISAET 0O TOYHO NMOHSATh B3aUMOCBSA3b MEX/Y paclpeleleHHeM HOCHTe-
JIel, SHepreTU4eCKUMH YPOBHAMHU U TeMIIEpPaTYypHbIMU M3MeHeHUsAMU. IlosyuyeHHble aHaIUTHYECKUE BbIpa-
KEHUS XOPOLIO COIJIAacyIOTCA C Pe3yJsibTaTaMM YHUCICHHBIX METOAOB U IPEIOCTAaBIAIOT 3HAYUTENbHBIC Ipe-
HMYIIECTBA IIPH MOJCIHPOBAHIN W NMPOSKTHPOBAHUH BBHICOKO3()()EKTUBHEIX TEPMOIICKTPUIESCKUX MaTepHa-
noB. [IpemnoxkeHHsI noaxox sABIseTcs dPPEeKTHBHBIM U MHPOPMATHBHBIM MHCTPYMEHTOM JUIS TEOpETHIe-
CKHX HCCIEIOBAHUH M ONTUMH3AINH B 00JIACTH TEPMOAJIEKTPUKH HOITYTIPOBOIHUKOB.

Knioueswvie crosa: xordpunuenta 3eedexa, TepMOIIESKTPOABIKYIIAS CHJIA, OIYIIPOBOAHUK, MeTon Depmu—
Jupaka

Information about the author

Adem Akkus — Department of Physics, Research Assistant, Faculty of Arts and Sciences, Gazi-
osmanpasa University, Tasli¢iftlik Campus, 60000, Tokat, Turkey; e-mail: ademakkus76@gmail.com;
ORCID ID: https://orcid.org/0009-0007-2638-7433

Cepus «®usukax. 2025, 30, 3(119) 83



