Article
https://doi.org/10.31489/2025PH1/13-19 Received: 05.07.2024
UDC:538.91, 538.958 Accepted: 10.10.2024

A. Bakytkyzy', Z.T. Karipbayev'", Y. Suchikova’, A.B. Usseinov', [T.A. Koketai’,
N.K. Mussabek’, A.L Popov4

'L.N. Gumilyov Eurasian National University, Astana, Kazakhstan;
’Berdyansk State Pedagogical University, Ukraine;
3Karaganda Buketov University, Kazakhstan,
*University of Latvia, Riga, Latvia
(*Corresponding author’s e-mail: karipbayev zht 1 @enu.kz)

Exploration of p-Ga,0O; Ceramics Synthesized via Solid-State Method

B-Ga,0; ceramic was synthesized using the solid-state method, a well-established technique for creating ce-
ramic materials with controlled composition and structure. The process began by pressing gallium oxide
(Ga,05) powder into a unified form, ensuring even distribution and compactness of the material. This pressed
form was then subjected to annealing at 1400 °C for 10 hours, a critical step facilitating the formation of a
stable and crystalline f-Ga,O3 phase. Energy dispersive X-ray analysis (EDS) was employed to investigate
the elemental composition of the synthesized B-Ga,O;ceramic. The analysis confirmed that the material
closely adhered to the ideal stoichiometric ratio of oxygen to gallium (O/Ga) at 3:2, ensuring the purity and
consistency of the ceramic. The optical properties of the f-Ga,O; ceramics were thoroughly studied. Surface
morphology analysis and elemental composition measurements were complemented by the recording of pho-
toluminescence excitation and transmission spectra at successive wavelengths ranging from 200 to 800 nm.
These spectra provided valuable insights into the material’s electronic and optical behavior. Both the synthe-
sized f-Ga,Ozceramic and commercial $-Ga,O; crystals exhibited distinct photoluminescence peaks in the
blue (~2.7 eV) and ultraviolet (3.3, 3.4, 3.8 eV) spectral ranges.

Keywords: synthesis, B-Ga,O; ceramics, photoluminescence, annealing, stoichiometric ratios, morphology,
elemental composition, point defects

Introduction

Gallium oxide (Ga,0;) stands out due to its broad bandgap, significant breakdown electric field, and
unmatched thermal and chemical robustness [1, 2]. These attributes position it as a premier material for high-
power electronic devices, UV LEDs, and gas sensors. Moreover, its resilience to radiation damage, bandgap,
and thermal stability hint at its potential in advanced scintillators and phosphors. Its luminescence is
enhanced through doping with rare-earth ions or other luminescent agents.

Ga,0; encompasses five recognized phases: a, 3, v, 0, and € [3, 4]. The B-phase garners the most atten-
tion, being the most stable and noted for its superb electrical and optical characteristics. Specifically,
B-Ga,O; possesses a vast bandgap of 4.9 eV [5] and an impressive breakdown field, approximately 8 MV/cm
[6]. Such attributes hint at its capability to surpass silicon carbide (SiC) and gallium nitride (GaN) in power
applications.

Notably, B-Ga,0O; has displayed commendable scintillation properties [7, 8]. It emerges as a prime can-
didate for several applications, with its broad bandgap reducing self-absorption, thus augmenting light out-
put. Its thermal fortitude and radiation resistance also make it apt for challenging settings. The enhanced
photoelectric absorption and Compton scattering properties of B-Ga,0Os, attributed to its high atomic number
and density, amplify its scintillation efficacy.

For bulk p-Ga,0Os crystal growth, a slew of techniques is available, including casting [9], EFG [10],
Czochralski [11, 12], Bridgman [13], Pulsed laser deposition [14], and hydrothermal methods [15]. The EFG
method is lauded for its prowess in yielding sizable, top-tier f-Ga,Os crystals [16]. However, the final crys-
tal’s quality can vary based on temperature, extraction rate, and starting material.

In terms of crafting ceramic Ga,0;, processes such as solid-state reactions [17], sol-gel techniques [18],
and spark plasma sintering [19] can be harnessed. While these avenues facilitate various shapes and dimen-
sions, they sometimes fail to deliver the desired electronic crystallographic purity.

Adding to the methods above, novel research has spotlighted remarkable outcomes in manufacturing re-
fractory ceramics, especially magnesium fluoride (MgF,) and yttrium-aluminum-garnet (YAG) ceramics,
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using a potent electron beam [20-23]. Such breakthroughs have increased enthusiasm for honing this emer-
gent synthesis technique for refractory substances using an influential electron beam.

Solid-phase synthesis offers significant advantages for producing oxide materials, including high-purity
products, simplified purification, and enhanced reaction efficiency. This method is scalable, environmentally
friendly, and allows for precise control over stoichiometry, crucial for creating complex oxides with specific
properties. Direct combination of metal powders or oxides at high temperatures eliminates the need for sol-
vents, simplifying the synthesis process and reducing environmental impact. Solid-phase synthesis is versa-
tile and capable of producing a wide range of oxides — simple, mixed, and doped — by selecting appropri-
ate precursors and conditions. Its simplicity, scalability, and alignment with green chemistry principles make
it an attractive choice for materials science research and industrial applications, ensuring phase-pure oxide
materials are essential for catalysis, electronics, and materials science sectors.

Experimental

The synthesis of B-Ga,0; ceramics was meticulously carried out employing a solid-state method, utiliz-
ing an initial f-Ga,0; powder that boasted an exceptionally high purity level of 99.999 %. This high-purity
powder was methodically pressed into tablets under a substantial pressure of 2 tons, achieving a uniform di-
ameter of 1 cm for each tablet. Figure 1 shows a pressed f-Ga,O; ceramic. Subsequently, these compacted
tablets were subjected to a rigorous annealing process within the confines of a high-temperature furnace. The
annealing procedure was conducted for an extended duration of 10 hours, at a significantly high temperature
of 1400 °C, ensuring the tablets were placed in an alundum crucible to withstand the high-temperature condi-
tions. Following the annealing phase, the ceramic segments were allowed to gradually return to ambient
temperature, a crucial step to prevent thermal shock and ensure structural integrity. Once cooled, these seg-
ments were then meticulously segmented and subjected to a thorough analysis to assess their structural and
compositional attributes. This careful and precise synthesis process is aimed at achieving optimal ceramic
properties through controlled high-temperature treatment and subsequent detailed examination of the result-
ing ceramic segments.
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Figure 1. p-Ga,0; ceramics

The surface morphology of the crafted ceramic samples was inspected using a Hitachi TM3030 scan-
ning electron microscope, paired with a BrukerXFlash MIN SVE energy dispersive system (or energy-
dispersive spectroscopy, EDS), set at an acceleration voltage of 15 kV. This was integral for the composi-
tional analysis of B-Ga,0;. To further comprehend the ceramics’ electronic and optical characteristics, exci-
tation and PL emission spectra were logged in a wavelength span between 200 and 800 nm. These measure-
ments were conducted using a CM-2203 spectrofluorimeter at room temperature. For a more comprehensive
interpretation, the data from these newly synthesized samples were juxtaposed with equivalent metrics ob-
tained from commercially available unintentional doped (UID) B-Ga,O; crystals with a (-201) orientation,
sourced from Tamura Corp., Japan.
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Results and Discussion

Luminescence spectra of sintered and commercial f-Ga,0; ceramic

Figure 2(a, b) showcases the photoluminescence spectra of both newly synthesized ceramics and com-
mercial crystals upon excitation at 4.9 eV. Through the application of Gaussian approximation, we were able
to delineate three separate components within these spectra. These identified components are characterized
by peaks that correspond to blue luminescence, observed at approximately 2.7 eV, and UV luminescence,
noted at energy levels of 3.3, 3.4, and 3.8 eV, as illustrated in Figure 2(a). A comparative analysis of the
spectra from both the synthesized ceramics and the commercial crystals reveals a striking similarity in their
overall profiles. However, a discernible variation is observed in the luminescence peak of the synthesized
ceramics, which manifests at a slightly diminished energy level, around 3 eV, as indicated in Figure 2(a).
This downward shift in energy suggests the presence of structural distortions and defects within the crystal
lattice of the synthesized ceramics. These structural anomalies are implicated in the modification of electron-
ic properties, thereby rendering them distinct from those observed in commercial crystals. The observed re-
duction in luminescence intensity can be attributed to two primary factors: a decrease in the levels of oxygen
vacancies (VO) and the entrapment of electrons, which are essential for luminescence, by specific defect
sites or traps within the crystal structure.
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Figure 2. f-Ga,0; ceramics synthesized under a powerful electron beam

Surface morphology and elemental composition

The equipment utilized facilitated the examination of three-dimensional samples with shadow and vol-
ume contrast, achieving a resolution as precise as 30 nm. As depicted in Figure 3, the standard SEM images
of the crafted B-Ga,O; ceramic surfaces span an area of roughly 0.016 mm” (a), and the magnified image of
the powdered sample is 1000 times its original size (b). The derived ceramic exhibits a unified surface struc-
ture, signifying the total elimination of powder granules or other defects, culminating in a solidified phase.
The primary gallium oxide powder comprises particles ranging from 1 to 15 um, as shown in Figure 35.

The composition of the synthesized p-Ga,O; ceramic is meticulously aligned with the ideal stoichio-
metric ratio of oxygen to gallium (O/Ga) of 3/2, a proportion that is critical for achieving desired material
properties and is comprehensively documented in Table [24]. This precise compositional alignment mirrors
the stoichiometric design principles established in prior studies of f-Ga,O; nanowires [25, 26], underscoring
the reproducibility and precision of the synthesis process. Notably, post-annealing treatments have been ob-
served to significantly alter the O/Ga ratio, leading to a notable reduction in gallium content alongside an
increase in oxygen levels. This shift towards a higher oxygen content is attributable to the environmental ox-
ygen influx and the subsequent reduction in vacancy concentrations within the crystal lattice, a phenomenon
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consistent with behaviors observed in other crystalline oxide systems [27-38]. Such alterations in stoichiom-
etry highlight the dynamic nature of the material’s composition, influenced by thermal treatments. Moreover,
the initial stoichiometry of the gallium oxide powder used in the synthesis process closely mirrors that of the
annealed ceramic samples, indicating a high fidelity in the transference of stoichiometric ratios from the
starting materials to the final ceramic product. This observation reinforces the importance of precise starting
material composition for achieving the desired characteristics in the annealed ceramics.

3
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Figure 3. SEM images of synthesized ceramics and the initial Ga,0; powder

Table
Elemental analysis of the powder sample and synthesized f-Ga,O; ceramics (in At. %)
Atom Synthesized B-Ga,O; | Pristine powder B-Ga,O3
Ga 33.2 334
0) 66.8 66.6
O/Ga ratio 2.0 1.99
Conclusions

The spectral, surface morphology and elemental composition of 3-Ga,O; ceramics derived from a pow-
dered sample under the influence of a potent solid-state synthesis method have been investigated. These at-
tributes were further compared to the properties of commercial crystals utilized in solar-blind photodetector
and scintillator manufacturing. The spectral characteristics of the created ceramics closely mirror those of
commercial crystals. When excited in the primary absorption band, the variance in luminescence spectra be-
tween the crafted ceramics and commercial crystals can be attributed to lingering distortions and flaws. The-
se irregularities are notably diminished after further annealing. Post-annealing, UV luminescence remains a
predominant component of the entire spectrum, but blue luminescence diminishes. This reduction is attribut-
ed to the partial annealing of oxygen vacancies and the trapping of luminescent electrons by specific sites.
Moreover, the annealing process enhances the Ga/O ratio, giving it an edge over commercial crystals.

The solid-state synthesis method paves the way for the more rapid and cost-efficient creation of
B-Ga,0; ceramics, negating the necessity for supplementary equipment or interventions. This method is an
effective strategy for generating doped and pure refractory ceramics with elevated melting thresholds.
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Katrsl neHe anicimen cunresaenred f-Ga,0; kepaMuKachbiH 3epTTEy

B-GayO3; kepaMHKambIK KypaMbl MEH KYPBUIBIMBI OaKbUIAHATHIH KEPAMHKAJIBIK MaTepHalapAbl jKacayIblH
JKaKChl KaJIBINITACKAaH ofici KaTThl KYH ofici apKpuibl cuHTe3zey. IIporiecc MarepuanasH OipKemKi Tapamysl
MEH BIKIIAMIBUTBIFBIH KaMTaMachi3 eTeTiH ramuii okcuai (Ga,O;) YHTaFblH OipTyTac MIllliHTe MpecTey
apkpUIEl Gacranansl. Conmal keitin Oy npecrenred nimid 1400 °C Temneparypana 10 carat GoifbI skackITyFa
YIOBIpAas], Oy TYpakThl skoHe Kpuctaias! -Ga,0; ¢a3zachHBIH TY3UTYiH KEHUIIETETIH MaHBI3IB KaJaM.
Cunresnenren  [-GayO; KepaMHKachIHBIH ~ 2JIEMEHTTIK KYpPaMbIH 3epTTey YIIH HSHEPreTHKAaJBIK
nucnepcrsuibiK pertrenik tanaay (EDS) konnansniasl. Tangay MaTepraniblH KepaMUKaHBIH Ta3aJIbIFbl MEH
KOHCUCTEHIIMACBIH KaMTaMachl3 €Te OTBHIPBIN, OTTeri MeH ramwmiinig (O/Ga) MiHCI3 CTeXHOMETPHSUIBIK
apakaTbIHackIHA 3:2 coiikec KeneTiHiH pactanpl. -Ga,O; KepaMHUKaCHIHBIH ONTHKANBIK KaCHEeTTepl MYKUAT
3eprrengi. bertik MopdonorusHsl Tangay xKoHe 3IeMEHTTIK Kypamasl emmey 200-zeH 800 HM-re meifinri
JIOMEKTi TONKBIH Y3BIHABIFBIHAA (POTOJIOMUHECHCHIMSHBIH KO3ybl MEH OTKi3y CIIEKTpJEpiH TipKeyMeH
TOJIBIKTHIPBULIBL. Byl criekTpiiep MaTepuaiblH JIeKTPOHIBIK )KOHE ONTHKAIBIK KaCHETTepi Typabl KYHIBI
Tycinikrep Oepeni. Cunresnenred f-Ga,0; KepaMUKAIBIK koHE KOMMepIHSIIBIK [3-Ga,O3; KpHCTanaapbl KOk
(~2,7 3B) xane ynprpaky:iri (3,3, 3,4, 3,8 aB) crexrpiik quanasongapaa GOTOIIOMUHECIEHIMSHBIH alKbIH
LIBIHIAPBIH KOPCETTI.

Kinm ce30ep: cunres, P-Ga,0; kepamuka, (OTOIIOMHUHECLUEHLHNS, KYHIIpy, CTEXHOMETPHUSUIIBIK KaThIHAC,
MopdoJiorus, 3EMEHTTIK KypaM, HYKTEIiK aKayJjap
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Exploration of B-Ga,03 Ceramics ...

A. bakbiTkbzbl, K. T. Kapun6aes, f. CyunkoBa, A.b. Yceunos,

T.A. Kokeraii, H.K. Myca6ex, A.H. IToro

HUccaenoBanue kepamuku B-Ga,0;, CHHTE3UPOBAHHOM TBEPAOTEIbHBIM METOAOM

Kepamuka B-Ga,O; Obl1a CHHTE3HpPOBaHA C HCIIOIb30BAHUEM TBEPAOTEILHOTO METO/Ia, XOPOIIO 3apEeKOMEH-
JIOBABIIETo ceOsl B CO3MAHUN KePAMHUUECKUX MATEPHAIOB ¢ KOHTPOINPYEMBIM COCTaBOM H CTPYKTypoH. IIpo-
Lecc Havajcs ¢ IpeccoBaHus mopomka okcuna rawms (Ga,O;3) B equHyto GopMy, 4TO 00eCIeyrIo paBHO-
MEpHOE pacrpezeieHre 1 KOMIIAKTHOCTh MaTepHana. 3aTteM IpeccoBaHHas opma ObLTa IOABEPrHYTa OTXKH-
ry npu 1400 C B Teuenue 10 4yacoB, 4TO SIBISETCS BaKHBIM ILIAroM, CIIOCOOCTBYIOIIMM OOpa30BaHUIO CTa-
OWIbHOM M KpucTammyeckoil dassl B-Ga,0;. [ uccienoBaHus 3JIEMEHTHOTO COCTaBa CHHTE3UPOBAHHOMN
kepaMuki [3-Ga,O; ObUT HCIOTB30BaH SHEPTOANCIIEPCUOHHBIN peHTreHoBCckmid aHanmn3 (EDS), koTopslii moa-
TBEpAWI, YTO MaTepuai OJIM30K K UIeaTbHOMY CTEXHOMETPHIECKOMY COOTHOLICHHIO KHCIOPOJa K TaUIHIo
(O/Ga) B 3:2, 9T0 OOecneynBaeT YUCTOTY U OJHOPOTHOCTH KepaMUKH. ONTHYECKHE CBOWCTBA KEpaMuKH [3-
Ga,O; ObUIM TIMATENFHO M3YYEeHBL. AHAIN3 MOP(OIOTHH MOBEPXHOCTH M M3MEPEHHS 3JIEMEHTHOTO COCTaBa
OBUIH JOTIONHEHBI PETHCTpaIieil CIeKTPOB BO3OYKAEHHS M MPOITYyCKaHUs (HOTOTIOMHHECICHIIN HA ITOCIIe-
JIOBaTeNIbHBIX JUIMHAX BOJH B Anamna3zone oT 200 no 800 HM. DTH CHEKTPBI NPEIOCTABIIN LIEHHYIO HH(pOpMa-
L0 00 ANIEKTPOHHBIX M ONITUYECKHUX CBOicTBax Marepuaia. Kak cuHTe3upoBanHas kepamuka B-Ga,Os, Tak u
KoMMepueckue Kpuctamibl B-Ga,Oz moka3aan OTYETINBbIC MUKH (POTOTIOMHHECICHIINY B CHHEM (~2,7 5B) n
yinbTpaduoneroBoM (3,3, 3,4, 3,8 3B) ciekTpanbHBIX AUana3oHax.

Kniouesvie cnosa: cunres, kepamuka -Ga,03, GOTONOMUHECIIEHIINSA, OTXKHUT, CTEXHOMETPHYECKHE COOTHO-
HICHHs, MOP(HOJIOTHS, STTEMEHTHBII COCTaB, TOUEUHBIE Te(EKTHI
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