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Optical characteristics of tungsten trioxide luminescence in different matrices

The comparative research using time-resolved spectroscopy of the optical characteristics of an emission in
two types phosphors: natural phosphors: ZnWO4, CdWO4, microcrystalline WO3, and artificial once: wide
band gap dielectrics LiF, MgF2u BaF2 doped with tungsten trioxide were presented. Both single crystals and
ceramic samples obtained in the process of high-speed radiation synthesis in air under a flux of 1.5 MeV elec-
trons were studied. It has been established that the spectral-kinetic characteristics of the studied materials lu-
minescence are the similarity in dielectrics, where WO3 is present as a dopant; in semiconductors (MeWO4),
where tungsten trioxide is present as WO62— oxyanion and in crystal lattice of tungsten trioxide binary com-
ponent. It is found that tungsten trioxide, being doped in dielectric, forms a subband of impurity states in the
dielectric band gap, due to which, of spatial separation of electron-hole impurity pairs becomes possible upon
optical excitation of the dielectric.

Keywords: radiation synthesis; natural phosphors, artificial phosphors, luminescence, time-resolved spectros-
copy, emission center, subband.

Introduction

The wide practical use of transition metal oxides MeO (Me: W, Ti, Fe), double oxides AMeO (A: Cd,
Mg, Ca, Zn), oxyfluorides AMeOF is due to the manifestation of amazing electrical, magnetic, optical prop-
erties of such materials. Their superior chemical stability, high catalytic activity, molecular and electronic
flexibility are sufficient to make this material suitable for a wide range of applications including
photocatalysis for water purification from contaminants, gas sensors, solar cells in electrochromic, photo-
chromic, photoelectrochromic devices [1-7].

Among polyvalent metal oxides, tungsten trioxide WOj3 is considered to be one of the most important
gas sensing materials in the world, being sensitive to many different gas species, like Os;, CO, NO, H,S, and
CH,. Among double oxides MeWO, wolframite ZnWOQ, is a promising candidate in photocatalysis for the
photodegradation of chemical contaminants. It has proved to be an efficient photocatalyst under both ultravi-
olet and visible light irradiation, or being doped with different ions, or by forming a heterostructure with dif-
ferent compounds such as ZnO, TiO,, WOs, and others. ZnWQ,-based catalysts have been explored toward
inorganic and organic molecules [8-10].

In general, the catalysis process starts with the creation under the light irradiation of electrons (e) in the
conduction band (CB) and holes (h) in the valence band (VB) of the catalyst. Holes in the VB are strongly
oxidizing, while electrons in the CB are strongly reducing. The free charges, reaching the catalyst surface,
are involved in the creation of free radicals, consumed in the processes of decomposition, mineralization, and
oxidation of various pollutants. The efficiency of catalysis depends, in particular, on the number of charge
carriers in the CB and VB, which is kept constant if spatial charge separation can be achieved or decreases,
as a result, of the e-h pairs recombination.

In the present work the radiative recombination of electron-hole pairs in the materials used in catalysis
is investigated. The relevance of such studies is obvious since it is free charge carriers that determine the ef-
ficiency of the realized catalytic processes.

The study of optical properties of phosphors has been carried out for several decades, however, at pre-
sent; there is no consensus on the nature of the luminescence center even in the well-studied natural phos-
phors MeWO,. According to [11-14], emission centers (EC) are octahedral oxyanion WOg>, as components
of the undisturbed crystal lattice. The luminescence spectrum presents a monoband at 2.6 eV belonging to
spin-forbidden 3T1u—>1Alg triplet singlet electron transition in self-trapped excitons (STE) and is an intrinsic
(fundamental) property of the crystal lattice.

Cepusa «dusmka». 2024, 29, 4(116) 143


https://doi.org/10.31489/2024PH4/143-155

L.A. Lisitsyna, G.K. Alpyssova, D.A. Mussakhanov

An alternative interpretation of the EC nature was reported in [15, 16], where the light output in band at
2.6 eV is due to strong influence of external factors, complex technology of sample preparation, low degree
of the original materials purity, high level of lattice imperfection caused by inability to maintain the specified
level and defect type of the devices components. Within this concept, both the emission and excitation spec-
tra of the emission in band at 2.6 eV belong to extrinsic defects of lattice deficit-oxygen centers WOg,. The
luminescence of such material is not fundamental, and the crystal lattice is only an intermediary in the light
energy transition to the local impurity center.

Obviously, without knowing the nature of the EC, there is no chance to influence on the efficiency re-
combination of the free charges created by the action of light in material. The lack of a unified view on the
nature of emission centers, as well as the on influence of external factors on the magnitude of the light out-
put, is obstacles to expanding the scope of practical application of these advanced materials. From the gener-
ally accepted point of view, parameters of the emission transition, such as light output, emission region, de-
cay time of emission, excitation spectrum are determined by not only the structure of EC but also properties
of matrix.

The present study is a comparative research of the optical characteristics of the W-O emission centers in
in six types of phosphors: natural ones (ZnWQO,, CdWO,crystals, WO; ceramics micro-powder) which are
widely used in catalysis and artificial ones (wide-band gap dielectrics: LiF, MgF, and BaF,, doped with
tungsten trioxide). The studies were carried out using time-resolved spectrometry with nanosecond time
resolution.

The aim of such comparison investigation is to figure out the nature of ECs and effect of the phospho-
rus matrixes on the properties of tungsten-oxygen emission centers.

Materials and research methods

In the present work, the emission properties of W-O complexes either in the form of dopant or as a
component of the crystal structure were the objects of research. The wide-band dielectrics of different mor-
phology: LiF crystal and ceramics MeF, (Me: Mg, Ba), doped with WO; (so called artificial phosphors) pre-
sented the first group of materials. The natural scintillators, the so-called self-activating materials: crystals
and ceramics MeWO, (Me: Zn, Cd,) and microcrystalline ceramics powder WO; presented the second one.

Natural phosphors of ZnWQ, and CdWO, were grown by the Czochralski method at the Institute for
Single Crystals (Kharkov). The tungsten trioxide was present in the form of oxyanion WOs"". The phosphors
belong to semiconductors with a band gap not exceeding 5 eV and possess high radiation resistance and high
light output.

Artificial phosphor LiF doped with tungsten trioxide WO; with a concentration up to 1 wt.% was grown
by the Czochralski method at the State Optical Institute (Sankt Petersburg). The MgF, and BaF, doped with
tungsten trioxide were synthesized under a high-energy electron beam with an ELV-6 electron accelerator
created at the G.l. Budker Institute of Nuclear Physics (Novosibirsk). The maximum content of the dopant in
ceramics samples was 0.5 wt. % due to the high volatility of tungsten hexafluoride WFs.

Microcrystalline WO; powder was supplied by Hebei Suoy New Material Technology Co., Ltd (China)
with a purity of not less than 99.5 %.

The method of synthesis by using a flux of 1.4 MeV electrons was developed, applied and described by
us in [17-21]. A charge consisting of a mixture of powders with different composition and components ratio
was placed in a copper solid crucible. A beam of electrons with a diameter of about 2 mm was scanned along
the surface of the charge with a frequency of 50 Hz using electromagnets; the crucible with the charge was
displaced relative to the beam at a rate of 1 cm/s. The duration of the radiation pulse was 2 ms, the estimated
value of the synthesis temperature was ~1500 C.

Radiation-chemical processes of interaction of environmental components with the open surface of the
molten charge start with the formation by electron pulses of free (non-localized) electrons (e) and holes (h)
(electron-hole plasma) for a time not more than 10 "° s from the onset moment of the radiation pulse. Nor-
mally, the formation of a new near-order (phase transition) was initiated by an external parameter — the
temperature. In the express synthesis method used, phase formation takes place in dielectric materials con-
taining short-lived radiolysis products of high concentration (10* cm™) during the radiation pulse (2 ms)
with a significant time delay in temperature rise. Apparently, in such extreme conditions the phase formation
was initiated by quantum fluctuations of charge density in electric and magnetic fields of electron-hole plas-
ma. Formation of the crystalline phase occurs during the action of the radiation pulses (< 2 ms) and subse-
guent annealing of ceramics at 700 C in air.
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The repeatability of spectral-kinetic characteristics of synthesized materials, as well as the properties
similarity of crystalline and synthesized materials of the same chemical composition testify to the possibility
of using the express method developed by us for practical purposes. Its main advantages include high-speed
synthesis in air without supplying thermal energy from outside, possibility of obtaining ceramics in the form
of crystallites with sizes depending on radiation field parameters.

The initial imperfection of research materials was evaluated by the absorption spectra in the range of
13-3 eV with a vacuum monochromator-based spectrometer at 300 K.

Natural phosphors ZnWO, and CdWQ, regardless of morphology (ceramic, crystal) reveal transparency
boundaries in the form of a threshold of about 4 eV. It is assumed to be located in the region of the Urbach
“tail” and refers to the absorption transition of self-trapped excitons (STE) in WOg" oxyanion [22-27]. The
band gap E, in these materials is determined in the range from 3.2 to 4.5 eV.

The lattice structure of the binary compound WO; was corner-sharing WOg octahedron units that are
capable of forming clusters of different sizes [28, 29]. These clusters are considered to be connected to each
other by W-O-W or hydrogen bonds, the latter due to incorporated water. The value of the band gap depends
on the degree of the anionic sublattice imperfection and is determined in the range Eg=3.25-2.7 eV. The lat-
ter value belongs to the formation with the chemical formula (WO; nH,0).

Pure wide band gap crystals LiF (E;=13.6 eV), MgF, (E;=12.4 eV) and BaF, (E;=10.6 eV), grown in a
fluorinating atmosphere, were transparent in the E<Eg region. In the LiF crystal, the WO3 doping is accom-
panied by a shift of the transparency boundary towards lower energies up to 4 eV with increasing tungsten
trioxide content in the lattice (Fig. 1 (a)). The absorption coefficient at 8 eV reaches the value of 100 cm™,
which indicates a high level of initial lattice imperfection of the doped crystals.

Crystals ZnWO,, CdWQ, and ceramics samples BaF,-WO; and MgF,-WOj; opaque in the E>3.9 eV.
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Figure 1. Absorption spectra of LiF crystals (a)(b). (a): non-doped (1), doped with WO30.1 wt.
% (2); (b): 0.2 wt. % (2); 0.3 wt. % (3). (c): absorption spectra of ZnWOQO, crystals.

All investigated materials under the action of light flux luminesced in the spectral range of 2.9-2.5 eV.
The luminescence spectra were measured using two crossed MDR-204 monochromators equipped with a
Hamamatsu R928 PMT for radiation detection. The integral characteristics of the luminescence were meas-
ured using an AvaSpec-2048 USB2.0 high-precision fiber optic spectrometer. Spectral-kinetic parameters of
photoluminescence (PhL) and cathodoluminescence (CL) in crystals were studied in the time interval of
1.10 *-1.102 s after the end of a single excitation pulse in the temperature range of 15-300 K.

Emission spectra and decay kinetics of PhL and CL were recorded on a LeGroy-WP-6030a oscillo-
scope.

The excitation spectra of the emission were measured in the interval of 6—1 eV at 300 K in a steady
state mode with a hydrogen lamp as a source and were measured by the Agilent Cary Eclipse
spectrofluorimeter.

The emission of phosphors was investigated under two types of excitation: Ee=Eq (1) and E>>Eq (2),
where Eg is the band gap of the binary component WOs.

The first condition was realized when PhL was excited by the fourth harmonic of Nd-laser (photon en-
ergy of 4.66 eV, pulse duration is 5 ns). The second condition was realized at excitation of luminescence by
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a pulse of 250 keV electrons with a duration of 10 ns. In both cases, researched materials luminesced in the
region of 3.0-2.5eV.

The surface structure of the synthesized samples was investigated using a scanning electron microscope
Mira 3 (TESCAN). If the examined samples were dielectrics, they were coated with a conductive carbon
layer using a Quorum Q150R ES sputtering system. The investigation was conducted at an accelerating volt-
age of 25 kV.

As an example, Figure 2 shows a picture of as-synthesized under the influence of an electron beam
E=1.4 MeV, P=18 kW/cm? ZnWO, ceramics in the crucible and SEM images of its sample surfaces. On the
surface of ZnWO, samples upon increasing the image resolution, a porous microstructure with elongated
elements ranging in size from 7 to 20 um and a thickness of approximately 7 pm are observed.

Figure 2. A picture of as-synthesized ceramics ZnWQ, being in the crucible and SEM images
of the surface of this ceramic sample.

X-ray diffraction patterns were collected using a Bruker D8 ADVANCE diffractometer (AXS, Berlin,
Germany) equipped with a scintillation detector in step-scan mode over a diffraction angle range 26 of 10 to
90° and CuKa radiation as the source. Sample identification utilized the Powder Diffraction File (PDF-2)
database (ICDD, 2007), and indexing was performed using the EVA software (Bruker, 2007).

Figure 3 shows XRD spectra of synthesized ZnWO4 (a), and MgF2 doped with WO3 (b) samples.
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Figure 3. XRD patterns of ZnWQ, ceramics sample (a) and MgF, doped with WO; (b)

Every synthesized ceramics ZnWQ,, CdWO,, MgF, and BaF, are found to have a high degree of
crystallinity, their elements composition is close to stoichiometric, and parameters similar to those ones in
single crystals.

Results and Discussion

As it was previously shown [30, 31], in LiF dielectric doped with transition metal oxides (Me: Ti, Fe,
W), emission in the region of 3-2.6 eV (Fig.4 (a)) occurs inertia-free with respect to a nanosecond excitation
laser pulse (4.6 eV) or electron pulse (250 keV). The luminescence decay kinetics has two components: ns
and us at 270 K (Fig.4 (b)). The intensities ratio of the short and long components in band maximum is de-
termined by the degree overlap of the bands at 3.0 and 2.6 eV.
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The spectrum of the ns component is independent of the oxide type and is a band with a maximum at
3.0 eV and FWHM of 0.6-0.7 eV. The spectrum of the us component is a monoband in the region of
2.8-2.5 eV, whose maximum position depends on the oxide type (Fig. 4 (a)).
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Fig. 4 (a): PhL spectra, excited by laser pulse (4.6 eV) in LiF crystals, doped with Fe,O5 (1, 2), TiO, (1, 3),
WO; (1, 4), measured with 10 ns (1) and us delay (2—4) relative to the end of the excitation pulse at 270 K
(the spectra are normalized); (b): PhL decay kinetics at 2.6 eV in the crystal LiF-WOs,
measured with ns and s delay (on the insert).

Below we will mainly describe the optical properties of tungsten trioxide in different matrixes.

As it turned out, luminescence at 2.6 eV can be excited in quite different materials: in dielectrics, not
only LiF, but also MgF, and BaF,, doped with WOjs; in natural phosphors ZnWO,, CdWQO,, where tungsten
trioxide is a structural component of the lattice; and in binary compound WO; (Fig. 5 (a)).

Figure 5 also shows the excitation spectra of emission at 2.6 eV in the studied materials in the range
3.8-6.2 e¢V.In all spectra there are thresholds in the region of 3.8—4 eV. Due to the presence of a small
amount of dopant, we were able to measure the long-wavelength edge of the spectrum in the region >4 eV
and establish the presence of three well-resolved bands at 6.2; 5.5 and 5 eV in spectrum of BaF, ceramics

doped with 0.04 wt. % WO; (Fig. 5 (c)).
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Figure 5 (a): PhL spectra, excited by laser pulse (4.6 eV) of ZnWO, ceramics samples (1); MgF,-WO; (2),
CL spectrum of binary compound WOj3 (3); BaF,-WO; (4). (b): excitation spectra of emission at 2.6 eV in ceramics:
ZnWOy, (1), BaF,-WO; (2), CdWO, (3) and MgF,-WOs; (4); (c): excitation spectrum
of emission at 2.6 eV in BaF, ceramics doped with 0.01 wt. % WO..

Attempts to evaluate the role of the lattice cation in the organization of the energy structure of the EC
led to the following conclusions.

It is known that at photoexcitation in the region >4 eV in double oxides AWO (A: Zn, Mg, Ca, Cd),
which are n-type semiconductors with a band gap width of 3-5 eV, a luminescence in the region of
2.4-2.8 eV occurs; the lattice cation practically does not affect the spectral position and band half-width of
the luminescence.

It turns out that this conclusion can be extended to materials of other chemical composition, provided
that they contain W-O complex. So, in the double oxide Li2WO4 and in the Li2W0.95 M00.05 O4 system at
low temperature (4.2 and 10 K, respectively), the spectrum of an intrinsic luminescence of the tetrahedral
WO4 complex excited at about 5 eV consists of a band at 2.5 eV and FWHM 0.6 eV [32, 33]
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In the most studied oxyfluoride K3WO3F3, belonging to the double oxides AWO6-xFx (A: K, Rb),
emission at 2.6 eV with spectral and Kinetic parameters similar to those in the spectrum of natural phospho-
rus ZnWOoO4 have been found [34].

Thus, the experimental data carried out by us and known from the literature confirm the calculations of
theorists and indicate a minor influence of lattice cation on the formation of VB and CB in studied MeWO,
semiconductor materials. Band structure of materials was formed by oxyanion orbitals. The VB top was
formed by 2p states of oxygen; the bottom of the CB was formed by vacant 5d states of the polyvalent ion W.
The value of the minimum energy required to excite the intrinsic luminescence in the materials is not less
than Eq (3.2-4.5 eV).

Another parameter that allows estimating the degree of connection between the EC and the matrix lat-
tice is the Stokes shift (Ess). Ess carries information about the value of energy losses for relaxation of the crys-
tal lattice of the matrix in the location area of the excited EC. According to our results, the value of Es does
not depend on the lattice type and is equal to 1.5-1.3 eV for EC with emission transition at 2.6 eV. Since the
same value of Eg is determined and in nanocrystalline powder WQ3, it becomes obvious that in this case Eg
does not reflect the elastic properties of the matrix containing the EC but characterizes the energy losses in-
side the tungsten oxide during its excitation.

In search of structure-sensitive characteristics of the luminescence, we have investigated the emission
decay at 2.6 eV in various materials. It was found that in LiF matrix the emission decay time constant in the
series of Fe, Ti, W oxides is equal to 180, 60 and 25 ps at 270 K and increases by a few orders of magnitude
when temperature decreases. Figure 6 (a) (curves 1, 2) shows the temperature dependence of the lumines-
cence decay time of impurity oxide centers TiO, and WO; in the LiF matrix. For the WO3 the luminescence
decay time in the low temperature region is different in ZnWO4 and LiF -WO; (Fig. 6 (a) (curves 2, 3)).
However, it is not clear whether the lattice type or the energy position of the impurity in the lattice affects the
probability of a radiative transition in the low temperature region.
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Figure 6 (a): temperature dependence of the decay time constants of PhL at 2.6 eV in LiF crystals,
doped with TiO2 (1), WO3 (2), and in ceramic semiconductor ZnWO4 (3).
(Incurve (3, a) black triangles are data from [35], rhombuses are data from the present studies). (b):
temperature dependence of time decay constant (1), light output at 2. 6 eV (2) in LiF-WO3 crystal.

The kinetics of emission decay over time after the end of nanosecond pulse excitation splits up into

three branches with different decay components and can be expressed by three exponentials:
JO=x Aexp(-t/t),

where A; and 1; are the amplitude intensity and the decay time constant of the corresponding decay time
component.

Decay time constants at 270 K have the following values: 1;=0.2 us, 1,= (3—4) us and 13=18-20 in
MgF,-WO; and BaF,-WOs; ceramics samples, 25—35 ps in Zn and Cd tungstate ceramic samples and in LiF-
WOQO; crystals. It should be noted that this peculiarity in the energy structure of luminescence centers (three-
component attenuation process) is an inherent property of the emission transition at 2.6 eV and is preserved
in different types of crystal lattice: in the face-centered cubic lattice (LiF), wolframite (ZnWO,), rutile
(MgF,) and in the fluorite lattice (BaF,).
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The fundamental properties of the ES also include the existence of an anomalous temperature depend-
ence of the emission decay at 2.6 eV in the low temperature region. In MeWOQO, semiconductors in the tem-
perature range 5-400° K there are two temperature regions with different temperature dependence of the
light output in the band at 2.6 eV. In the high-temperature region (T>250° K) — in the region of temperature
luminescence quenching — the decrease of light output with rising T (lsts=f(T)) is due to increasing proba-
bility of thermal transition of the luminescence center from the excited to the ground state accompanied with
phonons emission. In the low-temperature region (5-100° K) in a narrow temperature range, an increasing
probability of the radiative transition is observed with a constant value of light output (I5ts=f(T)). This effect
is observed in the range of 4-15 K in ZnWO, crystals, in CdWO, crystals in the region of 8-20 K, and in
CaWOy; in the range of 1040 K [36-38].

We found a similar effect in LiF-WO; and LiF-TiO, systems, but in a wider temperature range of
15-150 K [39, 40]. The details of the anomalous temperature dependence of the luminescence parameters at
2.6 eV in the LiF-WO; crystal are presented in Figure 6 (b) (Temperature quenching of luminescence in the
2.6 eV band in this material starts at T> 250 K [36, 38, 41]). For mathematical description of the observed
effects, a three-level energy model emission center consisting of ground level and splitted excited level,
which lower sublevel is metastable, were proposed in [38, 42].

Thus, the above-described properties of the emission at 2.6 eV in six types of phosphors indicate the ab-
sence of a connection between tungsten trioxide and the matrix and the absence of a matrix effect on the pa-
rameters of various processes: absorption, excitation and photoluminescence with the participation of this
oxide.

The minimum value of photon energy required to excite the emission at 2.6 eV in ZnWO, and CdWQO,
is about 4.1 eV and coincides with the transparency border these materials. In binary compound WO; the
energy of about 3.6-2.7 eV is required to excite the luminescence at 2.6 eV. According to [43-45], emission
in this material is a result of electron-hole recombination.

It has been established that in natural phosphors the excitation spectrum of luminescence at 2.5-2.7 eV
represents an energy continuum in the range of 4-30 eV (the range of fundamental absorption). For example,
in CdWQO,2.5 eV emission excited in the region of 4.5-7 eV is the result of recombination of genetically
linked electron-hole pairs in the form of molecular oxyanion self-trapped excitons. In the region of higher
energies photons create free electrons and holes. During subsequent electron-hole recombination, part of the
released energy is transferred to EC to excite 2.5 eV emission. The similar processes occur in ZnWOQO, and
CaWwo, [12, 46-48]. The authors estimated the absorption coefficient in the region of fundamental absorp-
tion of 5-30 eV and confirmed the correlation between these two processes: emission excitation at 2.6 eV
and the value of the absorbed energy. Consequently, the presented two types of spectra (excitation and ab-
sorpt;on) belong to the fundamental properties of natural phosphors with tungsten trioxide as the oxyanion
WO6 .

Based on our earlier studies, the introduction tungsten oxide or oxides of transition metals Fe or Ti in
LiF crystal is accompanied by a loss of transparency in a wide range of 4—12 eV. The absorption spectrum of
LiF crystal doped with WOjs is a group of overlapping bands in the range of 5-12 eV (Fig. 1 (a)). It means
that the oxide of polyvalent metal forms wide energy subband of the absorption states in the dielectric band
gap. In this case in LiF-WO; under light irradiation the following sequence of events is possible.

¢ Due to the large width, the subband of absorbed states of dopant (Fig. 1 (a)) located close to bottom
of the dielectric CB or even overlapped one.

o Photogenerated exited electron (e) of dopant transits to CB leaving a hole on the dopant ion.

o The lifetime of such free electron in the CB becomes indefinitely large, first, due to absence of a hole
(h) in the VB of the dielectric, second, low probability of e-h recombination on dopant, concentration of
which is not more than 1 wt.%.

Conclusion

The characteristics of PhL and CL in semiconductors ZnWO, CdWQ,, binary compound WO; and in
WO; doped dielectric matrixes LiF, MgF, and BaF, both in single crystals and in ceramic samples were in-
vestigated using time-resolved spectrometry methods.

The similarity of spectral-kinetic parameters of emission in the region of 2.9-2.5 eV excited in all in-
vestigated materials has been established.

The parameters values of the studied emission at 300 K are given below:

1. the spectral position of the emission band peak is at 2.5-2.8 eV;
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2. FWHM of emission band is 0.5—-0.75 eV;

3. emission decay time is 18—30 ps;

4. three-component character of luminescence decay at 2.6 eV and coincidence of time decay constants
of components in different matrixes;

5. splitting of the upper excited energy level of the luminescence center;

6. the value of the minimum energy of excitation emission at 2.6 eV is about 3.8-4.1 eV in all investi-
gated materials;

7. the Stokes shift value of emission center is 1.5-1.3 eV;

8. no impact of the lattice cation on the optical properties of tungsten trioxide.

9. the absorption spectrum of the LiF dielectric doped with WO; is a set of overlapping bands in the
range of 4-12 eV, which indicates the formation of a subband of absorption levels of the dopant in the for-
bidden band of the dielectric.

The independence of the parameters of the observed emission from the properties of the matrices in
which the radiative center is located allows us to attribute the radiative transition at 2.6 eV to an interband
transition in the crystal structure of the binary compound WOj3, and the characteristics of the transition — to
fundamental ones.

It is found that tungsten trioxide being doped in dielectric, forms a subband of impurity states in the die-
lectric band gap due to which of spatial separation of electron-hole impurity pairs becomes possible upon
optical excitation of the dielectric.
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JLLA. Jlucuupina, I'.K. AnnsicoBa, J[.A. MycaxaHos

OPTYPJli MATPULATAPAAFbI BOJIb(paM TPHOKCHI
JIIOMUHECHEHIIUSICHIHBIH ONTHKAJIBIK CUNIATTAMAJIAPbI

Exi Typaeri momuHOGOpIapaarbl CoyJelIeHYAIH ONTHKAIBIK CHIIATTaAMaJapbIHBIH pYKCaT €TUIreH YyaKbIT
OOMBIHIIA CHEKTPOCKONMSCHIHA CAIBICTEIPMANIBI  3€pTTEY YCBHIHBUIFAH, SIFHH: TaOuru JroMHHOQOpIap:
ZnWO,, CdWO,, mukpokpucraiasl WO3 skoHe KacaH bl TIOMUHO(OPIIAP: KEH apalbIKTAFbl JHIJICKTPUKTED,
LiF, MgF, xone BaF, Bonb(ppaMm TpHOKCHIIMEH JerupieHred. 1,5 MaB a5eKTpoH arbIHBI Ke3iHIe ayajia
JKOFaphbl JKbUINAMABIKTBI COYJIENCHY CHHTE3I NpOLECiHIe ajblHFaH MOHOKPHCTAAp [a, KEPaMHKAaJIBIK
YIITisiep ge 3epTTeni. 3epTTeNeTiH MaTeprualAapAblH JTIOMUHECICHIMSCHIHBIH CIIEKTPIIIK KOHE KHHETHKAIIBIK
cUIaTTaManaphbl JUANIEKTPUKTEP/IiH KacHeTTepiHe yKcac eKeHAIri aHbIKTanapl, MmyHaa WO; omaHT periHae
KATBICA/BI; XKAPTHUIAH OTKisrimTepae Bombppam Tpuokcrxi WO® — OKCHAHHOH TYpiHIE JKoHE BONb(ppaM
TPUOKCHII eKUTIK KOMIOHEHTIHIH KpPHUCTaJJIbIK TOpbIHAA Oonaael. Boibdpam TpHOKCHAI TUANEKTPHKTE
JICTUPJICHTEH Ke3/I¢ MTUAJICKTPHUKTIH OTY KOJIAFbIHIA KOCMa KYWJIEPiHiH iIKi jKOJIAFbIH TY3€TiHI JQJICIICH]I,
COHBIH apKACBhIHIA JHMAJICKTPHKTIH ONTHKAIBIK KO3Ybl KE3iHAE SJIEKTPOHIBI-TECIK KOCMa JKYNTAaPHIHBIH
KEHICTiKTe 06JIiHyl MyMKiH OOJMaIbL.

Kinm ce30ep: pagnanmsiiblk cuHTE3, Taburu (Gocdop, xkacanasl Gocdop, TIOMHHECIEHINS, YaKbIT-pYKCaT
€TIUITeH CIIEKTPOCKOIINS, KAPKHIPAY OPTAIBIFBI, IIKI KOJAK.

JLA. Jlucuupina, I'.K. AnnsicoBa, J[.A. MycaxaHoB

OnTuyeckne XapaKTepUCTHKH JIOMUHECHEHIINH TPHOKCH/Ia BOJIb(ppama
B Pa3/IMYHBIX MATPHIIAX

IIpencraBieHo cpaBHUTENEHOE NCCIENOBAHIE C TIOMOIIBIO BPEMSI-Pa3pEIIeHHOH CIIEKTPOCKOHH ONTHIECKIX
XapaKTePUCTHK W3IydeHHs B JBYX THIAX JIOMHHOGOPOB: MpUpOAHBIE JoMuHOGOpE: ZnWO4, CdWO4,
MuKpokpuctaumaeckuii WO3 1 HCKyCCTBEHHBIE TIOMHHO(OPHI: MNPOKO30HHEIE qraekTpuky, LiF, MgF2
BaF2, nerupoBannble TpHoKCcHIOM Boib(pama. Beum mccieroBaHbl kKak MOHOKPHCTAIUIEL, TaK U KepaMHde-
cKkre 00pa3Ifbl, ITOy4eHHbIE B IIPOIECCE BEICOKOCKOPOCTHOTO PAJHAI[IOHHOTO CHHTE3a Ha BO3JIyXe MO I10-
TOKOM 3JIeKTpOHOB 1,5 M»3B. YcTaHOBIEHO, YTO CHEKTPaIbHO-KHHETHYECKHE XapaKTEPUCTUKH JIFOMUHEC-
IIEHIIMH HCCIIEA0BAaHHBIX MaTepUaloB UMEIOT CXOJCTBO CO CBOMCTBAMM AURIEKTPUKOB, rae WO3 mpucyrct-
BYeT B KaueCTBE JOMAHTA; B MOJYIPOBOIHUKAX, I/Ie TPHOKCHA Bosb(ppama npucyTcTByeT kak WO62 — ok-
CHaHMOH M B KPHCTAJUIMYECKOH peleTke OGMHAPHOIO KOMIIOHEHTa TpHOKcuzaa Bojbdpama. JlokazaHo, 4yTo
TPUOKCH] BOJIb(ppamMa, OyIydn JISTUPOBAHHBIM B AUAJIEKTPHKE, 00pa3yeT B IOJIOCE MPOITYCKAHUS AUIIEKTPH-
Ka TOJIIOJIOCY MPUMECHBIX COCTOSIHHH, Oiaromapsi KOTOPOH IpU ONTHYECKOM BO30YKICHHH JMIJIEKTPHKA
CTaHOBHUTCSI BO3MOXHBIM IIPOCTPAHCTBEHHOE Pa3/ieTIeHIe IeKTPOHHO-BIPOTHBIX IIPAMECHBIX T1ap.

Kniouesvie crosa: paquallOHHBIA CHHTE3, IPHUPOIHBIN JIIOMUHO(OP, HCKYCCTBEHHBIH TIOMUHO(Op, JTFOMHU-
HECIICHIINS, BPEeMs-Pa3pelleHHas CIIEKTPOCKOIHS, IIEHTP CBEUEHHsI, MTOJ[30Ha.
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