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Application of non-Euclidean metric in the electric power industry
for reduction of measurement uncertainty

The paper proposes the use of the non-Euclidean metric to reduce the uncertainty that occurs when measuring
voltage for the tasks of ongoing continuous control of electric power consumption in large, branched high-
voltage electric networks. The problem is that for continuous control of electric power consumption, it is nec-
essary to install the active and reactive power measuring equipment in each node of the electric network (at
each substation) and to ensure the transmission of measurement information to dispatching control centers.
For countries with large electric networks, long distances between electric grid nodes and dispatch control
centers, this requires huge capital costs. Therefore, it is advisable to place equipment for measuring electric
power and voltage only in individual nodes of the electrical network, and then calculate the parameters of the
remaining nodes based on Kirchhoff's laws. But at the same time, there is a significant measurement uncer-
tainty, because the complex value of the voltage is usually not measured, only the modulus of the voltage
values is used for the calculation. The use of non-Euclidean metrics provides the reduction of the input data
uncertainty, which are necessary to control the consumption of electric power in each node of the electric
network.

Keywords: non-Euclidean metric, high-voltage electric network, electric power, measurement uncertainty,
measurement information.

Introduction

In order to ensure continuous monitoring of electric power consumption, it is necessary to install
equipment for measuring active and reactive power at each node of the electric network (at each substation)
and to ensure their connection with dispatching control centers. For countries with large electric networks,
large distances between power grid nodes and control centers, this approach requires large capital expendi-
tures, so it makes sense to place measuring equipment only in individual nodes, and then reproduce (identify)
all unknown network mode parameters according to Kirchhoff's laws. Devices for measuring complex power
values in the power grid (its active and reactive components) are simple in principle and relatively cheap,
since the phase shift angle is determined between the current and voltage measured on the same power sup-
ply line. As for devices for measuring complex voltage values on substation buses, the difficulty in this case
is that the phase shift angle must be determined between the voltages of different substations. Such measur-
ing equipment requires significant capital investments, which complicates the implementation of such meas-
uring procedures. In practice, in most cases, it is possible to receive only voltage modulus in network nodes
from telemetric measuring devices. It follows that the input data of the task of reproducing the modes of
electrical networks have significant uncertainty. Therefore, it is important to develop new mathematical
models and methods that allow to reduce the level of measurement results uncertainty [1].

Non-Euclidean geometry is a relatively new and powerful mathematical apparatus, which is currently
used for analysis and calculations in the field of automation and robotics [2—4], in physics [5, 6], medi-
cine [7, 8], information technologies [9-11], the educational process [12], and other fields of science. Re-
cently, non-standard methods of analyzing processes in electric circuits and networks have been actively de-
veloped [13, 14]. Non-Euclidean geometry in the theory of electric circuits is a non-standard method of anal-
ysis, it is used for the analysis of multi-port electric circuits [15, 16], its application in electromechanics [17,
18] is promising, as well as for calculating load modes, determining the parameters of load mode regulators
of power electric circuits [19, 20].
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The purpose of the work is to create the method of using a non-Euclidean metric to reduce the uncer-
tainty of voltage measurement for tasks of controlling electricity consumption in large, branched high-
voltage electrical networks.

Non-Euclidean modulus of the voltage vector

Consider the proposed method of reducing the uncertainty of input measured data, which is associated
with the practical impossibility of measuring the phase shift angle between the voltages of different substa-
tions.

The space of complex electrotechnical parameters can be represented as a two-dimensional linear met-
ric space with the Euclidean metric. The modulus of the voltage vector at any node of the network in this

space has the form:
U=,/U§+U§, 1)

where U, — active component of the voltage vector, U ; — reactive component of the voltage vector.

In order to emphasize the dependence of this value on the selected space metric, let's call it the Euclide-
an modulus of the voltage vector. This modulus in the any network node significantly depends on the net-
work parameters, the voltages of the power sources and the currents in the network coils.

But in such a two-dimensional linear metric space, the metric does not necessarily have to be Euclide-
an — it should only correspond to the axioms of the metric:

p(x,y)=0=x=y, )
p(x.y)=p(y.X), )
p(xz)<p(x.y)+p(y.2), (4)

where p(x, y) — the distance in this space between the points x and y.

Let's try to find the certain generalizing parameter that characterizes the voltage at any network node,
and at the same time depends much less than the Euclidean modulus of the voltage vector on the network
parameters, the voltages of the power sources and the currents in the network coils.

One of the directions of the search for such a generalizing parameter is the use of a metric different
from the Euclidean metric in the space of complex electrotechnical parameters. Quite often, various non-
Euclidean metrics are used to solve different tasks [2-12]. These can be linear non-Euclidean metrics for

which p(X,y) is a linear function, quadratic non-Euclidean metrics for which p(X,y) is a quadratic func-
tion, etc [8]. A detailed comparative analysis of these metrics is the subject of a separate study and is beyond
the scope of this paper. We only note that to achieve our local goal it is quite sufficient to use a linear non-
Euclidean metric for which

p(x,y):Blyl—X1|+|y2—X2|, (5)
where B — the reduction factor, that is a positive real number.

Let's verify what the expression (5) confirms to the axioms of the metric. For the first axiom we can
write:

x=y:p(x,y)=[3|xl—xl|+|x2—x2|=0. (6)
The second axiom has the form:
Blyl_)(1|+|yZ_X2|:B|X1_y1|+|xz_y2|- (7)

The validity of expressions (6) and (7) is obvious. Correspondence of (5) to the third axiom is not so
obvious, so let's prove that

lel_zll"‘lxz_zz |SB|X1_y1|+|X2_y2|+B| y1_21|+| yz_zzl- (8)
If the coordinates of the vectors X, v, z satisfy the condition (x1 2y, = zl)/\(x2 >y, > zz) , then expres-
sion (8) will take the form

B(Xi - 21)+(X2 - Zz)sﬁ()ﬁ - Y1)+(X2 - YZ)+B(Y1 - 21)+(y2 - Zz)- (9)
After carrying out the transformation of expression (9), we get
Bxl _BZ1+X2 —Z4 SBxl _By1+X2 —Y; +By1_le+ Yo =2, (10)
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After reducing the identical terms of expression (10), we have
Px, =Pz, +X, -7, =px, -z, +X, - Z, (11)
which had to be proved.
If the coordinates of the vectors x, y, z satisfy the condition (X, <y, <z,)A(X, <Y, <Z,), expression
(8) will take the form

B(_X1 + 21) + (_Xz + Zz) < B(_X1 + Y1)+ (_Xz + yz)+ B(_yl + 21) + (_yz +2, ) (12)
After opening the parentheses and reducing the identical terms, we get
—BX +Bz, =%, +2, =X +Pz, - X, +7,, (13)

which had to be proved.

In a similar way, the correspondence of expression (5) to the third axiom of the metric is proved for
other ratios of coordinates of vectors x, y, z.

Let's consider how the modulus of the voltage vector in any node of the network will look with the use
of such a metric, and what properties it will have. By analogy with the usual Euclidean modulus of the volt-
age vector, it is possible to write

U=B[U,[+]U,]. (14)

Let's call this value the linear non-Euclidean modulus of the voltage vector. To determine the properties
of this value, consider the equivalent circuit of the electrical network section (Fig.).

Ula_lep [a_j[p (/20—/'(/2,’
—_—>
Node 1 (O () Node 2
R +jX

Figure. Equivalent circuit of the electrical network section

It should be noted that installation of telemetry equipment at individual nodes of the electrical network
and subsequent determination of all unknown regime parameters according to Kirchhoff's laws has a high
cost in networks of 110-35 kV, since these networks contain hundreds of nodes. The number of nodes in
330-750 kV networks is much smaller, and equipping all nodes with telemetry devices is much cheaper [16].

The following notations are used in Figure: U,, — jU;, — complex voltage of the power supply
(U,,,U,, — active and reactive components, respectively); U,, — jU,, — complex voltage of the load node

(U,,,U,, — active and reactive components, respectively); 1, — jl, — complex section current (I

p a’lp _

active and reactive components, respectively); R + jX — complex resistance of the section (note that in

110-35 kV networks this resistance has an active and inductive components).
Let’s denote the linear non-Euclidean modulus of the voltage vectors of the first and second nodes, re-
spectively
Ul =BlUy, [+]U, | (15)
and
U; =BIU, [+]Uy, |- (16)

Let's find how they depend on network parameters and currents. According to Ohm's law, it can be
written

U, — jU,, =U, — jU,, —3(1, = jI,)(R+ jX) =
=U,, —/31,R—3I X - jU,, — jB1,X + j/3I R = (17)
=Uy, =B(1,R+1,X) = j(U,, ++3(1,X = 1,R)).
It follows from (17)
U, =U,, —V3(1,R+1,X), (18)
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U,, =U,, +V3(1,X = I,R). (19)

So
US =B|Uy [+]Uy, |, (20)
U =B|U,, [+]U,, =B IU, —VB(1.R+1,X )+|U,, +43(1.X ~ 1 R)]. (21)

By analogy with the voltage loss in the section (Fig.), which is defined as

AU = U2 +UZ - U2, +UZ,, (22)
let's introduce the concept of linear non-Euclidean voltage loss, which is defined as
AU#=U1#_U§#=B|U1&1|+|U1p|_B|U2a|_|U2p|= (23)

=B1U, [ +1Uy, | -BIU, —VB(1LR+1,X)[=[Uy, +43(1LX = 1,R)].
In expression (23), let's reveal the sign of the absolute value, taking into account the fact that for net-

works of 110-35 kV with an inductive load, U,,,U,,, U,,,U, , | ,, 1 — positive real numbers. In addition,
the ratios are valid for the same conditions

U, >>/3(1,R+1,X), (24)

[.X>1R. (25)

As a result, we get
AU* =BIU,, [+]U,, [-BIU,, —VB(1,R+1,X)|-|U,, +3(1,X - 1R} |=
=BU,, +U,, —BU, +3B1L,R+ /31 X —U,, —/31,X + /31 R = (26)

=V3(BI,R+BI X +1,R-1,X).
It is obvious that depending on the parameters of the network, parameters of the mode and the reduction

factor B, the linear non-Euclidean voltage loss AU* (unlike traditional voltage loss) can be equal to 0, and
also take a positive or negative value.

It is quite clear that in order to solve the problem of reproducing all the unknown parameters of the
network mode, we will be primarily interested in the cases of zero linear non-Euclidean voltage loss, i.e. the

condition U =UJ . Therefore, let's formulate and prove the corresponding theorem, namely:

Theorem.

For networks of 110-35 kV with an inductive load, the linear non-Euclidean voltage loss in the section
R, _1-Ptge
X, PB+tge
inductive resistivity of the section, ¢ — phase shift angle between voltage and current, B — reduction fac-

tor.
Proof.

Let's solve the equation

is 0 if and only if the condition is fulfilled, where R, — resistivity of the section, X, —

AU* =3(BI,R+BI,X +1,R-1,X)=0. (27)
If 1 — current modulus, then I, =Icose and I, =1 sing, in addition, R=R,L, X =X,L, where
L — section length. Taking these ratios into account, equation (27) can be written in the form
V31 (BR,Lcos g +BX,Lsing+ R,Lsine— X,Lcose)=0. (28)
Dividing the left and right sides of equation (28) by \/§ch05¢> , We get
BR, +BX,tgp+Rytgp— X, =R (B+tge)— X, (1-ptge)=0. (29)

It follows from equation (29)

R, (B+199)=X,(1-Btge) (30)
and
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R —

Xy B+tge
which proves the theorem for all cases except those for which 1 =0, or cose =0, which we exclude from
consideration as not occurring in practice.

Condition & = 1_5& can be recorded in other forms. It is obvious that there are identities:
Xy B+tge
Xy B+tgo BX, + Ry Xotgo+R,

Therefore, if one of the conditions (32) is fulfilled for any 110-35 kV section with an inductive load,
the equation U =U] is valid, that is, the linear non-Euclidean modulus of the voltage vector at the begin-
ning of the section is equal to the linear non-Euclidean modulus of the voltage vector at the end of the sec-
tion.

Estimation of the limits of use of the linear non-Euclidean modulus of the voltage vector

Let’s analyze the conditions (32) of the theorem proved above from the point of view of its use to reduce
the uncertainty of measurements. It is obvious that resistivity of the section R, and inductive resistivity of the
section X, are constant and independent quantities. Phase shift angle between voltage and current ¢ although
constantly changing (within narrow limits), it is also an independent quantity. So it is the only quantity that can
be influenced by the researcher to ensure the condition U/ :Uf , Is the reduction factor . Table 1 shows the
values B, which ensure the validity of the theorem depending on the values R,, X, and cos¢. They are
designed for overhead lines for a range of cross-sections from 50 to 240 mm? and cos¢ from 0.85 to 0.99.
As follows from Table 1, in these ranges, § can take values from 0.887 to 2.141. From the above, we state
that by choosing the appropriate value B for each line of a certain section and with a certain value of the

power factor, it is possible to ensure the fulfillment of condition U, =U] .

Table 1
Dependence of the reduction factor B on the values Ry, X, and power factor cos¢

C“’S; fﬁ%"on’ 50 70 95 120 150 185 240

Ro, Ohm/km 0.603 0.428 0.31 0.25 0.199 0.158 0.122

Xo, Ohm/km 0.452 0.441 0.43 0.423 0.417 0.41 0.401
CcOosQ
0.85 0.089 0.251 0.413 0.523 0.642 0.757 0.878
0.86 0.108 0.271 0.435 0.548 0.67 0.788 0.913
0.87 0.128 0.293 0.459 0.574 0.699 0.821 0.95
0.88 0.149 0.315 0.485 0.602 0.73 0.856 0.99
0.89 0.171 0.339 0.511 0.632 0.764 0.894 1.034
0.90 0.195 0.364 0.54 0.664 0.8 0.935 1.081
0.91 0.219 0.391 0.571 0.698 0.839 0.98 1.134
0.92 0.245 0.42 0.604 0.736 0.882 1.03 1.192
0.93 0.273 0.451 0.641 0.777 0.93 1.086 1.258
0.94 0.304 0.486 0.681 0.823 0.984 1.149 1.333
0.95 0.338 0.524 0.727 0.876 1.046 1.223 1.422
0.96 0.376 0.568 0.78 0.938 1.12 1.311 1.529
0.97 0.42 0.62 0.843 1.012 1.21 1.42 1.665
0.98 0.474 0.684 0.924 1.108 1.328 1.566 1.849
0.99 0.549 0.774 1.039 1.248 1.504 1.79 2.141

Let’s consider the cases when conditions (32) are not fulfilled. Inequalities follow from equations (27)

and (32):
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>W:AU#>O, (33)
X, 9o +R,

B< 0 =Rt8Q v g, (34)
Xotgo+R,

Let’s perform the comparative analysis of the relative losses of conventional and non-Euclidean voltage
for one of the widespread cross-sections of 120 mm? at the value of cos=0.92, quite typical for a 110 kV

network. Voltage losses are determined at the current modulus value of 100 A and the section length of
L =30 km. Let’s calculate the non-Euclidean voltage loss for different values of the reduction factor . For

simplification, let's take U, =U,, =115 kV, U, =0. We will calculate the relative losses according to the
formulas

2 2
AU V3IL(R, coso + X, sing) V3IL(X, cosp—R,sing)
A1 - " , (35)
Ul Ul Ul
AU*  BIL(BR, coso +BX,sing+ R, sing— X, cose)
—= p . (36)
Ul Ul
The results of the calculations are shown in Table 2.
Table 2

Conventional and non-Euclidean voltage loss in the section AC-120
at cosg =0.92, 1 =100 A, L =30 km and different reduction factors B

AU, % AU* %
B =0.600 -0.24
B =0.700 -0.06
1.78 B=0.736 0
B =0.800 0.11
B=0.9 0.29

Let's analyze the results given in Tables 1 and 2. It is obvious that even if the researcher inaccurately
predicts coso in the section, and accordingly inaccurately determines the reduction factors 3, then the value

of AU? in this case will be 6-15 times less than the value of AU . This makes it reasonable to use the linear

non-Euclidean modulus of the voltage vector U* when reproducing the modes of electrical networks. To do
this, it is necessary to calculate the network mode at average statistical loads, determine the values of the re-

duction factor B that provide for each section AU* =0, and then determine the value of U* in each node. If
we assume that the values of cose in the sections under current loads remain unchanged, then it can be as-

sumed that the values of U” in each node under current loads will also not change, and after receiving from
the telemetry devices the voltage values in the nodes, it will be possible to calculate the active and reactive
components of node voltage. Since in networks of 110-35 kV, the values of cose fluctuate in a rather narrow
range, the uncertainty of measuring the active and reactive components of the node voltage is quite accepta-
ble for the task of reproducing the modes of electrical networks.

The method of reproducing the modes of electric networks using the linear non-Euclidean modulus of
the voltage vector U* was implemented in the software complex “Analytical system of reproducing electric-
ity consumption”, which was implemented in the divisions of the energy supply company
“Vinnytsiaoblenergo”, the city of Vinnytsia, Ukraine. In the process of operating the developed software
complex, both company specialists and developers continuously assessed the uncertainty of network mode
reproduction.

In the conditions of providing the software complex with telemetric information at 70% of the maxi-
mum level, it was established that due to the use of the non-Euclidean modulus of the voltage vector, the
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standard deviation of the modes integral indicators decreased by almost 50% compared to traditional meth-
ods. This practically proves the expediency of using non-Euclidean metrics in power industry.

Conclusions

To ensure continuous current control of electric power consumption, the optimal solution is to place
sensors of active and reactive power in each node of the electric network and transfer measurement infor-
mation to dispatching control centers, which for large networks requires huge capital costs. Therefore, it is
advisable to install such sensors only in individual nodes, followed by reproducing of all unknown parame-
ters of the network mode based on Kirchhoff's laws.

Measuring complex values of voltage on substation buses requires determining the phase shift angle be-
tween the voltages of different substations, which is an extremely difficult task, requires significant capital
investments, and in most cases leads to the impracticality of such measurements. In order to solve this prob-
lem, it is proposed to receive from telemetry devices only modulus of voltages in the network nodes, which
means that the input data for the task of reproducing the electrical networks modes have the significant un-
certainty. In order to reduce this uncertainty, the expediency of using not the usual quadratic Euclidean met-
ric, but a linear non-Euclidean metric to determine the node voltage modulus has been theoretically proven
and practically confirmed.

Based on the calculations and practical studies, it was established that the uncertainty of reproducing
network mode parameters according to Kirchhoff's laws, in the presence of the necessary telemetry infor-
mation for the “Analytical system of reproducing electricity consumption” software complex, is significantly
smaller when using a linear non-Euclidean modulus of the voltage vector than when using the usual voltage
vector modulus.
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Ouey KaTeJIiriH a3aiiTy YIIiH 3JIEKTP JHePreTUKAChIHAA eBKJINATIK eMec
KOepceTKilTepai KOJIaHy

Makanaza ipi, TapMaKTaJIFaH >KOFapbl BOJILTTHI AJIEKTP JKEIJIEPIHAE MIEKTP SHEPTHACHH TYTHIHYABI Y3/iKCi3
OakpuIay ecenTepiHe KepHEyIi efiley Ke3iHIe TYBIHAANTBIH OCNTICI3IKTI a3aiiTy YIIiH eBKIUATIK eMec
METpUKaHbl MalJanaHy YCHIHBUIFaH. Macene MbIHaga, 3JIEKTP SHEPTHSsICBIH TYTHIHYABI Y3MIKCi3 OakpLIay
YIIH 3JIEKTp JKeTiCiHiH opOip TopaObiHaa (9pOip KOCANIKBl CTaHIMSANA) OCJICEHMl JKOHE PEaKTHBTI KyaTThl
oIy KypaJJapblH OpHATy >KOHE IHMCIETYEpNiK Oackapy OpTalbIKTapblHA 6©JIIIey aKmapaTblH Oepymdi
KaMTaMachl3 €Ty KakeT. Ipi anekTp skeminepi Oap, SJIEKTp TOpamTapbl MEH TUCIETYEPNIK OpPTAIBIKTAp
apachIHIAFbl YIKCH KAaIIBIKTHIK Oap emnep YIIiH Oy YAKEeH KypJeli MIBIFRHAApAB Tanan eteai. COHOBIKTaH
JNEKTP KyaThl MEH KepHeyIi eJleyre apHajFaH jKaOIBIKTBI TEK DJIEKTp JKENICIHIH JXeke TopanTtapblHa
OpHaJACTBIPFaH JKOH, colaH Keiin Kupxrod 3anmapsl Herizinae KajaraH TOPANTHIH TapaMeTpliepiH ecenTereH
*eH. bipak coHbIMEeH Oipre enmieymiH adTapiblKTail Oenrici3miri 6ap, efTKeHi Kypaeli KepHey MOHi ofeTTe
onmmeHOeHIi JKOHEe ecenTey YINiH TEeK KEpPHEY MOHICpIHIH MOyl KOJIaHbUIaabl. EBKIMATIK emec
KOPCETKIITEp/Ii MaiianaHy dIEKTp JKENICiHIH opOip TOpaObIHIAa 3MEKTP SHEPTHACHIH TYTHIHYABI OakpLIay
YIIiH KaXKETTi Kipic IepeKTepiHiH OeNTici3AiriH TOMeHIEeTYy i KAMTaMachl3 €Te/i.

Kinm ce30ep: eBKIMATIK eMec METPHUKA, KOFAPHI BOJBTTHI AIIEKTP JKENMiCl, HTEKTP KyaThl, eIIey Oenrici3airi,
oJIIIeY aKMapaTsl.

C. Kausis, B.B. Kyxapuyk, B. Maasspos, B. Kyuepyk, [1. Kynakos, M. I'pu0Gos

IIpuMeHeHne HeeBKIMI0BOM METPUKH B 3JIEKTPOIHEPreTHKeE
JJISl YMEHBbIICHUS NOTPEeIIHOCTH U3MEPEeHU

B crarse npeioxkeHo MCHONB30BaTh HEEBKIIMIOBY METPUKY UL YMEHBIICHUS HEOIIPEASIICHHOCTH, KOTOpast
BO3HHKAET MPU U3MEPEHHUHN HAIpPsDKEHHs B 337a4aX HEMPEepbIBHOIO KOHTPOJIS MOTPEOICHHUS dIICKTPOIHEPTHU
B KPYIIHBIX, Pa3BETBJICHHBIX BBHICOKOBOJIBTHBIX 3JEKTpHUUecKuX ceTsax. [Ipobiema 3akimroyaercs B TOM, 4TO
JUISL HEMIPEPBIBHOTO KOHTPOJISI MOTPEOJICHHS AJIEKTPOIHEPTUH HEOOXOIUMO B KaXKJOM Y3JI€ IJIEKTPUIECKOH
ceTd (Ha KaxIOW IOJCTAaHIMU) YCTAaHOBUTH CPEICTBA W3MEPEHMS AKTUBHOM M PEaKTUBHOH MOIIHOCTH U
obecreunTh Iepefady M3MEpPHTENbHON MH(OpMAMy B JUCIETYSPCKHE IEHTPHI ympaBieHus. [t cTpaH ¢
KPYTHBIMHA 3JIEKTPUIECKUMH CETSIMH, OOJIBIIIMH PACCTOSHUSIMI MEXKAY Y3JIaMH 3JIEKTpOCeTel U JucieTdep-
CKMMH IEHTPaMHU 3TO TpeOyeT OTpOMHBIX KalMTaJbHBIX 3arpar. IlosTomy obopymoBaHme ISl M3MEpEHHS
HNIEKTPUIECKOI MOITHOCTH ¥ HANPSDKEHHS [eJieco00pa3Ho pa3MelnaTh TOJIBKO B OTAETBHBIX y3JIax dJIEKTPH-
YeCKOIl ceTH, a 3aTeM PacCUMTHIBAaTh MapaMeTPhbl OCTAJBHBIX y3JI0B Ha OCHOBE 3akoHOB Kupxroda. OnHako B
TO K€ BpPeMs CYIIECTBYET 3HaUMTENIbHAsl HEONPEIeNCHHOCTh U3MEPEHHUS, TIOCKOJIbKY KOMIIJIEKCHOE 3HaUeHHUE
HANpsDKEHUsT 0OBIYHO HE M3MEpseTCs, a JUIsl pacueTa MPUMEHSETCS TOJNBKO MOJYJb 3HAYCHHH HATPSDKCHUSL.
Hcnonb3oBaHne HEEBKINIOBBIX METPUK 00ECHIEUNBAET CHU)KEHNUE HEONPEIEIEHHOCTH BXOIHBIX JAHHBIX, He-
00XOMMBIX JUISl KOHTPOJISI HOTPEOIJICHNUS HIIEKTPOSHEPTUH B KAXKIOM y3JIe DJIEKTPUIECKOH CETH.

Kniouesvie cnosa: HeeBKINI0BA METPUKA, BBICOKOBOJIbTHAS DJICKTPUYECKAs] CETh, IEKTPUUECKAs MOIHOCTD,
HEOIIPEIEIeHHOCTh N3MEPEHNH, U3MEpUTENbHAsT HHPOPMAIIH.
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