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Pore-scale modelling of fluid flow in porous media using the projection
method for incompressible Navier-Stokes equations in irregular domains

This paper presents the results of numerical simulation of incompressible viscous flow in porous media,
which comprise periodically arranged cylinders. This simulation is based on the numerical solution of the in-
compressible Navier-Stokes equations in irregular domains using the projection method on staggered grids,
where the irregular boundary is represented by its level-set function at the pore-scale level. The main problem
in numerical calculation of fluid flow through porous media occurs when the value of the porosity is close to
1 or is close to the threshold value since it is necessary to take a very fine numerical mesh, which requires ad-
ditional computing power and increases the calculation time. There are exact analytical solutions for simple
types of porous media which consist of periodically arranged cylinders. In this paper, the permeabilities of
these porous media were numerically calculated and compared with the previous works based on the numeri-
cal solution of the Lattice-Boltzmann equation in irregular domains, when the fluid flow obeys Darcy’s law.
The comparison of numerical and theoretical values of porosity shows that this method is sufficiently accu-
rate for porosity values ¢=0.2-0.8.

Keywords: Navier-Stokes equations, numerical simulation, projection method, fibrous porous medium, per-
meability, porosity, grid, irregular boundary, fluid flow, geometry of pore space.

Introduction

Many of the environmental and industrial problems are related to the fluid flow in porous media. There-
fore, understanding the processes that take place inside a porous medium plays a key role in science and
technology.

Rabbani and Babaei [1] used pore network modeling (PNM) with a Lattice Boltzmann Method (LBM)
to benefit from the strengths of both approaches. They calculated permeabilities of all throats using the LBM
and substituted in the pore network model. Solving the LBM for every throat leads to an accurate representa-
tion of flow, but the algorithm is computationally expensive. LBM is used to model the steady-state incom-
pressible fluid flow through different throat images and an Artificial Neural Network (ANN) is trained to
mimic the trend of throat’s permeabilities based on cross—sectional images [1].

The disadvantage of the PNM is that it cannot be applied to an inaccurate geometry. The main limita-
tion of direct methods is the high computational cost [2], which could be a major obstacle in the case of
large-sized and high-resolution volumetric images of porous material. As a solution to this size and time lim-
itation, domain decomposition and parallel computation have been comprehensively hired to increase the
models’ efficiency and scalability. As another solution to deal with computational limitations, machine learn-
ing can be employed to mimic the behavior of complex solid/fluid systems. The main idea is to save the
computational sources by solving a series of typical problems and extend the results to all similar cases.

With the development of high-performance computing and micro-CT technologies which allows to
construct detailed geometrical description of material microstructure, it is possible to use numerical experi-
ments for direct evaluation of material properties. In geophysical applications, such techniques are called
digital rock physics and are meant to accompany and supply conventional laboratory measurements for eval-
uation of transport properties of rock core samples [3].

To distinguish porous media from each other, it is necessary to determine the geometry of pore space,
due to microscopic pore sizes and a large number of pores per unit volume of porous medium. It is a difficult
task. In most cases, statistical methods are used to determine the geometry of pore space [4, 5]. The main
problem of the investigation of porous media properties is the problem of finding a relation between macro-
scopic parameters (e.g., permeability, elastic constants, electric or thermal conductivity) and the pore space
geometry of porous media (the microstructure of porous media). For example, when the fluid flows through
porous media at a low Reynolds number and it obeys Darcy’s law [6]:
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U= SV(p +pgz) (1)

where U is the flow rate, K is the permeability of porous medium,  is the fluid viscosity, p is the pressure in
the porous medium and pgz is the hydrostatic pressure. The main problem in this case is finding a relation
between the permeability and geometrical parameters of porous media. There are only approximate solutions
for simple cases of porous media comprising periodically arranged cylinders [7—11], which we consider in
this paper. Mostly in practice, the Kozeny—Carman relation between the permeability and geometrical pa-
rameters of porous media is used [12, 13]:

¢3
"~ 6s2
where ¢ is the porosity and s is the specific surface area. However, this relation was obtained for simple po-
rous medium which constructed by the parallel capillaries with circular cross-section and this relation does
not consider the microstructure of the porous medium.

This paper presents the results of numerical simulation of incompressible viscous flow in porous media
at the pore-scale level. This simulation is based on the numerical solution of incompressible Navier-Stokes
equations in irregular domains using the projection method on staggered grids, where the irregular boundary
is represented by its level-set function [14—16]. When the fluid flow obeys Darcy’s law, the permeability of
these porous media was numerically calculated and compared with the previous works based on the numeri-
cal solution of the lattice-Boltzmann equation in irregular domains [17], and also the artificial compressibil-
ity relaxation algorithm was applied [18].

Experimental

Definition of the problem. A porous medium of volume V is represented in the form of the domain D
which consists of two sub-domains: domain of voids D, with volume of fraction ¢ and domain of solid phas-
es D; with volume of fraction 1- ¢. The voids are called pores, and these pores form a pore space. Fluids that
occupy these pores can flow if these pores are connected with each other [12, 13]. The minimum value of
volume fraction ¢ at which fluid flows through a porous medium is called a threshold value [19]. A slow
laminar flow through a porous medium is the problem that needs to be solved on a microscopic level. The
microstructure of two-phase porous medium D is described in detail by the characteristic 1(x) function:

. _(0forXx€eD
1®) = {1 forx € Dj @)

The considering model is based on the numerical solution of Navier-Stokes equations for incompressi-
ble fluid flow through porous medium which is described by the I(¥) (equation (2)):

<aﬁ§tm + @ 6) - Vu, t)) = pg — Vp(X,t) + uV*iu(%,t), % € Dy 3)
V-u(x,t) =0,% € D, (4)

No-slip boundary conditions are applied on the pore-matrix interface oDy:
ﬁ(f, t) = O,Q_C) € 6D0 (5)

The cubic porous medium domain D with size a is considered and the periodic boundary conditions are
applied on its faces:

w7 -5) =u(w+5 ) ®)
where x, is the position of center of cubic domain D.
To find the permeability of porous medium, the steady state solution of equations (3, 4) with boundary
conditions (5, 6) is found using the projection method on staggered grids [15]. This solution is averaged over
the porous medium domain:

g =2 E0V, 7)
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Then the Reynolds number (Re = pTUL, where L is the characteristic length) is found below which the fluid

flow in porous medium obeys Darcy’s law for permeability calculation using the equation (1).

Numerical methodology. The solid surface is determined by introducing the level-set function for solid
phase. For example, if the solid phase is a single sphere with diameter d, then its level-set function is as fol-
lows:

2

2 2 2 d
Floy,z) = (x—xc)"+ O —yo)* + (2 —20)" -,
where Xc, Yc, Zc are the coordinates of the center of sphere. After introducing the level-set function for solid
phase the characteristic function I(x) (equation (2)) can be determined:

_(0if F(x,y,z) >0,
160y, 2) = {1 if F(x,y,2) < 1.
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Figure 1. Representation of the staggered grid and solid surface

Porous medium domain D is approximated by generating a uniform, structured mesh that incorporates
nodes of solid phase (or rock phase) D, and pore Dy domains (example of the 2D structured mesh is shown in

Figure 1 as black, solid lines).
The volume of solid phase of a porous medium can be calculated using the level-set function of solid

phase:

B { 0if I(x;,yj,2¢) =0 @®

Vi: =
TN if 1(x, yp ) = 1
where i, j, k are the indexes of the mesh nodes in x, y, z direction, respectively, A and V; j « are the size and

volume of the cells which circumscribed around the mesh nodes, respectively.
The total volume of the solid phase of a porous medium is:

Ny—1 «Ny—1 QN,—1
Vs = Zi=xo jZo k=0 Vi,j,k: ©)

where N,, Ny and N, are the number of the mesh nodes in x, y, z direction, respectively.
The total volume of pores of a porous medium is:

V,=V-V.
The volume fraction of pores (or porosity) of a porous medium is:
_Ww_q_¥%
¢ = v 1 v
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Also, the solid surface (blue line in Figure 1) can be calculated using the level-set function of solid
phase:
(Az lf (Ii+1,j,k =1or Ii,j,k =1 ) and Ii+1,j,k1i,j,k = 0,
Suk = JAZ if (Iijore =1o0rljp=1)andl;j1plije =0, (10)
LAZ if (Iijesr=1o0rljp=1)andl;jps1lijp =0,
0 otherwise.
The total value of the solid surface is (red line in Figure 1):

Ny—1 «Ny—1 GN,—
§=XiZo j:o k=015i,j,k (11)
The specific surface is:
)
S = V.

Calculation of the cross-sectional area and perimeter of a cylinder. The solid surface of a cylinder with
the periodic structure (Figure 2) is determined by introducing the following level-set function:

2

Fy) = (x—x)*+(y—ye)? -5, (12)

where d is the diameter of a cylinder.

Figure 2. Two-dimensional rectangular area (d is the diameter of cylinder)

The area and perimeter of the cross-section of a cylinder are numerically calculated using equations
(8,9, 10, 11, 12). The comparison of numerical values of cross-sectional area and perimeter of a cylinder
with exact values are shown in the Table 1, where a cylinder's diameter is d=0.6 (exact value of the area is

2
S = % = 0.282743 and the perimeter is P = md = 1.884956).
The deviation between the numerical value of area and exact value is:

E.A.= |numerical value — exact value|.

The relative error is:

E.A.
REA=——7/—
exact value
Table 1
The comparison of the numerical values of cross-sectional area and perimeter
of a cylinder with exact values (cylinder’s diameter is d=0.6)
Number of the S (cross EA REA. P (cros_s-sectional EP REP.
mesh nodes sectional area) perimeter)

16x16 0.269531 0.013212 | 0.046728 2.250000 0.365044 | 0.193662
32x32 0.286133 0.003389 | 0.011988 2.375000 0.490044 | 0.259977
64x64 0.281494 0.001249 | 0.004418 2.437500 0.552544 | 0.293134
128x128 0.283020 0.000277 | 0.000979 2.406250 0.521294 | 0.276555
256x256 0.282486 0.000257 | 0.000910 2.390625 0.505669 | 0.268266
512x512 0.282825 0.000082 | 0.000290 2.398438 0.513482 | 0.272411
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Permeability calculation. There are many theoretical predictions of the permeability of fibrous porous
media with the periodic structure [8-11].

John Happel [8] found the theoretical estimation of the permeability of these media by solving the
Stokes equation for a fluid flow around a cylinder with no-slip boundary conditions at the surface of cylinder
and periodic boundary conditions at the domain boundary. His theoretical prediction of the permeability of a

fibrous porous medium is:
K 1 1\ 1-—¢?
=B Lln(d)-22]
d? 32¢ o) 1+ ¢?

2
where K; is the permeability of fibrous porous media, d is the diameter of cylinders and ¢ = %, where a is

the distance between centers of cylinders (see Figure 2). The main inaccuracy in his calculation is that the
solution was based on solving the Stokes equation in a cylindrical coordinate system, and hence the bounda-
ry of its domain does not coincide with the real boundary.

In the work of Hasimoto [9], the exact solution of the Stokes equation for fluid flow around a cylinder
in the form of infinite series is used to predict the permeability of fibrous porous media. He found the theo-
retical prediction of the permeability of fibrous porous media using only the terms of lowest order of this
series:

Lk, 1

1
K; =ﬁ=32_(p,[ln(?)—1.476+2g0]+0(§0 ),

2

d
where ¢’ = Z?.

Later Sangani and Acrivos (1982) [20] improved the theoretical prediction of permeability of fibrous
porous media using the terms of the highest order of the series presented in the work of Hasimoto [9]:

K 1 1
K} = d_; =320 [m (a) —1.476 + 2¢' — 1.774¢'* + 4.078¢"> ] +0(p").
The value of K; is close to exact value when ¢ is close to 0, so the numerical value of permeability can
be validated by comparing with the value of K; when ¢’ is close to 0. They also presented the numerical
method to calculate the permeability for all values of the porosity in the work [10].
In the work [11], the porous medium is considered as “unit cell” and there is a unidirectional flow with
a parabolic velocity profile. Their theoretical prediction of the permeability of fibrous porous medium is:

oK1 (1-¢)
4 = dz - [ _ _ - .
3¢ <2(<P +2)+4 (1 \/5\/)%1 (p)2> T/aq) + 12arctan <\1/I-—_\/5>
-

The projection method on the staggered grid was applied to solve the incompressible Navier-Stokes
equations and all numerical calculations were performed using PARIS simulator [21]. The results of numeri-
cal calculation of permeability were validated by comparing with theoretical estimations of the permeability
of porous media like porous medium which consist of periodically arranged cylinders [7-11].

Results and Discussion

The fibrous porous medium with a periodic structure is considered in this section. Fibers are located at
the same distance to each other and have the same diameter. Planar flow, that is perpendicular to the axes of
cylinders, is considered. The fluid flows through this porous medium by the gravitational force. The follow-
ing parameters are used: fluid density p=1, fluid viscosity x=1, domain size a=1.

To find the permeability, the steady-state solution of Navier-Stokes equations is averaged over the po-
rous medium domain (equation (7)). The permeability of fibrous porous media is numerically calculated and
compared with existing theoretical estimations. For the case when the value of the porosity is close to 1, the
Brinkman's estimation can be used to obtain exact solution [22].

The relation between flow rate and number of mesh nodes is shown in Table 2.
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Table 2

Relation between the flow rate and number of nodes of the mesh for 2D fluid flow
through the fibrous porous medium when a cylinder's diameter is d=0.6

Number of the mesh nodes Flow rate
16x16 1.126954E-02
32x32 1.166258E-02
64x64 1.146031E-02

128x128 1.125835E-02

The comparison of numerical and theoretical values of the permeability of fibrous porous medium is

shown in Figure 3 and Table 3.

Table 3

Numerical values of the permeability of fibrous porous medium

d (diameter of the cylinders) | o (porosity) | s (specific surface) | K* = d—K2 (permeability)
0.2 0.968933 0.781250 2.076525
0.3 0.929626 1.218750 0.584678
0.4 0.874207 1.593750 0.207850
0.5 0.804138 2.031250 0.080000
0.6 0.716980 2.406250 0.030931
0.7 0.614929 2.781250 0.010859
0.8 0.496765 3.218750 0.003048
0.9 0.363464 3.593750 0.000543

Figure 3 illustrates the convergence of the flow rate (equation (7)) to the steady state value for 2D fluid
flow through the fibrous porous medium.
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Figure 3. Comparison of the numerical and theoretical values of the permeability of fibrous porous medium

When the cylinder's diameter is small, the boundary of the domain which is considered in the work [8]
almost coincide with the real boundary, so in this case the value of K is close to exact value (see Figure 3).

According to Figure 3 the numerical value of the permeability is close to the value of Kz when ¢ is
close to 1. Thus, the error in numerical calculation of the specific surface of the fibrous porous medium has a
weak effect on the numerical value of permeability.

Also, it can be seen that the numerical values of permeability presented in the work [10] are close to the
numerical values of permeability for all values of the porosity where the numerical calculations were per-

formed.
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Conclusions

This paper presents the results of numerical simulation of incompressible viscous flow in porous media
at the pore-scale level. To find the Reynolds number below which the fluid flow obeys Darcy's law, the in-
compressible Navier-Stokes equations are numerically solved using the projection method on staggered
grids. The main reason for choosing this method is the possibility of finding the steady-state solution of
Navier-Stokes equations more quickly than such methods as Lattice-Boltzmann, Smoothed-Particle Hydro-
dynamics, etc. However, this method becomes ineffective when the value of the porosity is small or is close
to 1. The comparison of numerical and theoretical values of permeability shows that this method is suffi-
ciently accurate for porosity values ¢=0.2-0.8.
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K.K. AkameBa, A.A. Kynaiikynos, b.K. Acun6ekos, J1.O. bonbicoek

KeyekTi opTagarpl CYHBIKTBIK aFbIHBIH K€yeK MACHITAOBIHAA MO/eJbAey
TYPAKCHI3 AMaKTaAPAa¥Fbl ChIFbLUIMANTBIH CYHBIKTHIK YIiH HaBbe-CToKC
TeHAeyJIepiHe MPoeKIUAIAY JAICIH KOJIaHy

Makasnazaa neproAThl OpHANACTHIPBUIFaH LIIMHAPIIEPICH TYPAThIH KEYESKTi OPTaaFbl TYTKBIP ChIFbUIMAHTHIH
CYHMBIKTBIKTBIH aFbIHBIH CAaHJBIK MOJENBJCYNIH HOTWXKedepi KendripinreH. byn Mozenbiey Iaxmar
TOpPJApBIHIAFbl NPOCKLMSIBIK OMICTI KOJIIaHA OTBIPBIN, TYPAKThl €MeC ayAaHIapAarbl ChIFBUIMAHTHIH
CyHBIKTHIK YIniH HaBbe—CTOKC TeHAEyJIepiH CaHIBIK IIEIIyre Heri3JeireH, MyHJIa TYpaKThl eMec IIeKapa
MacIITa0THl JIeHrelfe NOeHredl opHaTy (YHKIMSACHIMEH YCHIHBUFaH. KeyekTi opTa apKbUIBI CYHBIKTHIK
aFbIHBIH CAaHJBIK €CeNTeyAeri Heri3ri Mocene KeyeKTUIK MoHI 1 HeMece HIEKTI MOHTe JKaKbIH OOJIFaH Ke3ze
naiima Gomaxel. MyHIal skargaiinapia KOCBIMIIA €CENTey KyaThIH Ka)KeT eTeTiH ©Te a3 CaHIBIK TOPIbI
naiifialaHy Kepek, COHBIMEH Karap, €CeNTey YaKbIThIH apTThIpaabl. IIepHOATHI OpHAIaCTHIPBUIFaH
LWINHAPIEPMEH TYpaThlH KEyeKTi OpTa CHSKTBl KEYeKTi OpTaHbIH KapamailbIM TypJepiHe HaKThI
AQHAJIMTHUKANBIK menriMaep 6ap. Makana aBropiapbl Oyl K€yeKTi opTaiaplblH KEYeKTUIIrH CaHIBIK TypIe
€cemnTen, OJapAbl CYWBIKTHIK aFblHBI Jlapch 3aHbIHAa OaFbIHATBIH Ke3le OipKenki emec aiMakTapaarbl
bonpMaH TOp TeHACYiHIH CaHABIK MICMIIMIHE HETI3JeNTreH AJABIHFBI JKYMBICTADMEH CaJbICTBIPFaH.
KeyekTimKTiH caHABIK JKoHE TEOPHSUIBIK MOHEPIH calbICThIpy Oy axictiH ¢ = 0,2-0,8 keyekTislik MoHAepi
YILIH ©Te a1 eKeHiH KopceTei.

Kinm ce30ep: HaBbe-CTOKC TeHIEYNepi, CaHABIK MOJCIBACY, MPOCKIHUS dJiCi, TAIIIBIKTHI KEYCKTi OpTa,
OTKI3TIMITIK, KEYEKTLIIK, TOP, TYPAKCHI3 IIEKapa, CYHBIKTHIK aFbIHBI, KEYEKTEp KEHICTIT1HIH T€OMETPHSCHL.

K K. AkameBa, A.A. Kynaiikynos, b.K. Acun6exos, /[.A. bonbsicOek

ITopomacmiTabHOE MOJEIMPOBAHUE TEYEHHS KUAKOCTH B OPUCTHIX
cpeAax ¢ MCI0Jb30BAHHEM NPOEKIIMOHHOI0 METOAA NJIs1 HeCKMMaeMbIX
ypaBHeHuii HaBbe—CTOKCa B HEeperyJsipHbIX 00/1aCTSAX

B craThe npeacTaBiIeHbl pe3ybTaThl YUCICHHOTO MOICITUPOBAHUS TCUCHHUS BA3KOW HECKUMAEMOM SKHIK O-
CTH B MOPUCTOH Cpelie, KOTopask COCTOUT U3 MEPHOAUYECKH PACIIONIONKEHHBIX [HINHIPOB. JlaHHOe MOojie-
JMPOBaHKE OCHOBAHO HA YHCJIEHHOM pelleHuH ypaBHeHuii HaBre—CToKCa U1 HECKMMAEMOU KHIKOCTH B
HEPETYJSIPHBIX 00JIaCTSAX C UCIOJIL30BAHUEM MTPOEKIIMOHHOIO METO/IA HA IAXMAaTHBIX CETKax, Ie Hepery-
JsipHasi TPaHMIA [PEACTaBlieHa ee QYHKIUENW YCTaHOBKU YPOBHS Ha mopomaciutabHoM yposHe. OCHOBHAs
npo6sieMa MpU YUCIECHHOM PacueTe TEYEHHUS JKUIKOCTH Yepe3 MOPHUCTYIO Cpelly BOZHUKAET, KOT/a 3HaJe-
HHE TIOPUCTOCTU OJIM3KO K | WIIM K MOPOrOBOMY 3HAYEHUIO. B Takux ciydasx HEOOXOIMMO HCIIOJIb30BATh
OYEHb MEJIKYIO YHCIICHHYIO CETKY, UTO TPEOYEeT NOMOIHUTEIBHBIX BEIYUCIUTEIBHBIX MOIIIHOCTEM, a8 TAKKe
YBEJINYUBAET BpeMs BbIuMciIeHHi. CyIIECTBYIOT TOYHBIE aHATMTHYECKHE PEIICHHs JUIS TPOCTHIX THIIOB
MOPHUCTBIX CPEJl, TAKUX KaK TMOPHUCTHIE CPEJBI, KOTOPBIE COCTOST W3 MEPHOJUYECKH PACIONONKEHHBIX I[H-
JIMHPOB. ABTOPaMH CTAThU TIOPUCTOCTH YKA3aHHBIX MOPUCTHIX CPEJ ObUIN YUCIEHHO PACCUYMTAHBI M CPaB-
HEHbI C TPEABIAYIINMH paboTaMu, OCHOBAHHBIMH Ha YHCJIEHHOM pPELIEHWH PEIIETOYHOrO YpaBHEHUS
BoJibIiMaHa B HEPETYJSPHBIX 00JIACTSX, KOIJIa TEUEHHE XUIKOCTH Mo quuHsercs 3akony Japcu. CpasHe-
HUE YHUCJIEHHBIX ¥ TEOPETUYECKUX 3HAUEHHUN TIOPUCTOCTH TOKA3BIBAET, YTO JAHHBIA METO JOCTATOYHO TO-
4eH JUid 3HaYeHui nopucroctu ¢ = 0,2-0,8.

Kniouesvie cnosa: ypaBuenns HaBbe-CToKca, YHCIEHHOE MOJEIHPOBAHHE, IPOSKINOHHBII METO]], BOJIOK-
HHCTas! IIOPUCTAst cpejia, MPOHUI[AEMOCTh, HOPUCTOCTD, CETKA, HEPETyIIsIpHAs TPaHHIA, TeIEHHE )KUAKOCTH,
TEOMETpPHS TIOPOBOTO MPOCTPAHCTBA.
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