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Reconstruction of cosmological models are inspired by
generalization of the Chaplygin gas

This paper considers models arising from the composition of the modified Gauss—Bonnet gravity (the Gauss—
Bonnet invariant) and the general relativity (the Ricci scalar) against the background of a flat, homogeneous,
and isotropic space-time described by the Friedmann—Robertson-Walker metric. Advantages arising from
applying a theory containing higher-order invariants (Gauss—Bonnet invariant) consist in the presence of ad-
ditional degrees of freedom, which makes it possible to study the influence of small-order effects on the dy-
namics of the system under study, which are in search and confirmed by cosmological observational data. We
reconstructed two models with a power-law and exponential dependence on the Gauss—Bonnet invariant,
where the model ansatz is a combination of the inverse Weierstrass elliptic function and the power-law func-
tion describing the Hubble parameter. This facilitates obtaining a quasi-Dieter law of the change of the scale
factor in the initial and late epochs of the Universe. The application of the special function is inspired by gen-
eralization equation of state of the Chaplygin gas type, the Weierstrass gas. The application of the equation of
state with such dependence makes allows obtaining a quasi-periodic universe. The equations of state are
based on the Chaplygin gas are model equations of state and describe well the evolution of both the early and
the modern universe. The obtained two particular models are investigated for the fulfillment of the energy
conditions, which makes it possible to carry out analysis at a late stage of evolution of the universe and using
perturbation theory covering the period of the early universe. For the power-law and exponential models, the
perturbations of the Hubble parameter decrease in a finite time are shown, providing a way out of the infla-
tionary stage of evolution of the universe.

Keywords: Friedmann equations, f(G) gravity, Chaplygin gas, Weierstrass gas, energy conditions, perturba-
tion theory, inflation, accelerated expansion.

Introduction

Cosmological observation data [1-4] testify to the discovery of the phenomenon of accelerated expan-
sion and inform on cosmological parameters in the early epoch of the universe. To correctly understand the
genesis and process of evolution of the universe, it is required to introduce changes in the classical general
relativity by modifying it according to observational cosmology.

There are many possible theoretical descriptions of models responsible for this process. In particular,
dark energy models [5] inspired by the modified gravity f(R) have been proposed. Applying the modified
theory of gravity, such as f(R), gravity created the prerequisites for understanding the evolution of the uni-
verse to explain the accelerated expansion of the universe in recent times. An interesting alternative theory is
the modified Gauss—Bonnet gravity [6], or f(G) gravity. Concrete realistic models of f(G) gravity were
built to explain cosmic acceleration. By taking into account the corrections for the curvature of a higher or-
der, the features of the future finite time are provided. To study the quantum and general theory of gravity, it
is interesting to study the generalization of gravity, such as gravity f(G), where G is the Gauss—Bonnet in-
variant. In [7], inflationary phenomenology coming from a scalar field, with quadratic curvature terms in the
view of GW170817 was investigated. The dynamics of inflationary phenomenology were described and
proved that theories with the Gauss—Bonnet term can be compatible with recent observations. In the work
[8], de Sitter's solution in the framework of the non-minimal coupling of Gauss—Bonnet gravity with a scalar
field was considered and search for the stability of de Sitter solutions, which corresponds to the minimum of
the effective potential was made. In [9], inflationary phenomenology of the Einstein—Gauss—Bonnet theory
corrected for k-inflation was studied and the problem of non-gaussianity under slow and constant roll condi-
tions was considered.

In this paper, R + f(G) gravity model in the framework of flat and homogeneous space-time described
by the Friedmann—Robertson-Walker (FRW) metric is considered. Reconstruction of the resulting model
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with a special form of the Hubble parameter inspired by the generalization of the Chaplygin gas equation of

G
state — the Weierstrass gas, first presented in [10], is carried out with f(G) = G™ u f(G) = Ge’%. The ob-
tained two particular models are investigated for the fulfillment of the energy dominance conditions and

through perturbation theory, thus, embracing evolution in the early and late epochs of the universe.
Experimental

2. Basic of R + f(G) gravity
We consider the following action, which describes General Relativity plus a function of the Gauss-
Bonnet term:

1
S:fd4x,/—g [mR‘Ff(G)], (D
where k2 = 8rGy, Gy being the Newton constant, and the Gauss-Bonnet invariant is defined as usual
G = RZ _ 4Ruva + Rp.V}LO'RuVAG' (2)

By varying the action (1) over g,,,, the following field equations are obtained

1
0= 2k2( RW 4 Z g’“’R) + TH 4 — g‘“’f(G) — 2fGRR*Y + 4fGR#RVp — 2fGRMPITR S 5
— 4 RMPOVR , + Z(V“V”fG)R 29" (V*f)R — 4, V*f6)RYP — 4(V, V" fg )R

+4(V2fRW + 49" (V,V, [ )RP® — 4(V,V, f5)RHPV°, (3)

where we made the notations f; = f'(G) and f;; = f" (G). We shall assume throughout the paper a spatial-
ly-flat FRW universe, whose metric is given by

ds? = —dt? + a?(t)(dx? + dy? + dz?), 4)

In case (4), Einstein—Hilbert action (1) contains the modified Gauss—Bonnet gravity term and GR, we
can rewrite as point-like action is defined by the expression:

fdt\/_( +£—f—<a—24%>>, (5)

: 12 .
where ./—g = a3, R = 6(2H? + H) — the Ricci scalar, G = 24‘2—3‘1 = 24H2H + 24H* — the Gauss—Bonnet

invariant, a = a(t) — the scale factor, and H = %— the Hubble parameter.
From the action (5), Lagrange point takes the form

f s f

L= —3d2a+za3 —76a3 —4f"Gad. (6)
By applying Euler-Lagrange equation to the (5), we get equation of motion
2H + 3H? = L +]; G —4f"G2H? — 4f"GH? — 8f"GH(H? + H). (7
Accordingly, the first Friedmann 2H + 3H? = —p equation, pressure p takes the form
]: - f—G +4f"G2H? + Af"GH? + 8f"GH(H? + H). (8)

On the other hand, the total energy (Hamiltonian) corresponds to Lagrangian

3H? =—]—c+f G —4f"GH®. )
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From the second Friedmann 3H? = p equation, energy density p takes the form

p= —g +%,G —4f"GH?3, (10)

3. Research methods
We can introduce energy condition in pressure p and energy density terms p as [11]

NEC=>p+p=>0 (11)

WEC=>p=0,p+p=0,
SEC=>3p+p=0,p+p=0,
DEC=>p=0,—p<p<p.

To study the stability, we consider the conservation equation energy-matter perfect fluid

p+3H(p+p)=0. (12)
To do that, first, we have presumed a linear perturbation of the Hubble parameter as
H(t) = Hy®)(1+6D), (13)

where H(t) is the perturbed Hubble parameter and §(t) is the perturbation term.
Energy-matter perfect fluid [12]:

- e 4 a4
A =0, (4107 (¢% + A, exp(©)5 92,93) + Ast 7,

where H = Z—f, A4, A,, A; — arbitrary constants, g~ — inverse Weierstrass function, and g2, g3 — invariants.
Figure 1 represents H and H time dependence.

0.05 0.10 050 1 5 10

Figure 1. H and H dependence on cosmic time t at A; = 10,4, = 0.95,4; = 0.8.

Results and Discussion

4 Energy condition analysis

4.1 Power-law model

Let us consider particular case of R + f(G) gravity in form f(G) = G™. Take into account equations
(8), (10), (14) and

f(6)=G"f"(G) =nG""1f"(G) =n(n—1G" 2 f"(G) =n(n—2)(n—1G"?, (15)
pressure p and energy density p in Hubble terms take the form
G"(1 - ) ..
pL = % +4n(n—1)(n —2)G™"3GH? + 4n(n — 1)G™ %GH? 16)

+8n(n—1)G"2GH(H? + H),
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G"(1—n)

pr=——> —4n(n — 1)G™"2GH?3, 17

the graphical dependence of which on the cosmic time t is shown in Figure 2 at n = 4. This choice of n pro-
vides a contribution to the pressure p and the energy density p of all terms in (16) and (17).

a) . ~' b)

1n24

c) d)

Figure 2. Dependence on cosmic time t: a) pressure p;; b) energy density p;; ¢) p; + p; ud) 3p; + p;.

Note that, with decreasing n, the values of pressure and energy density decrease, so for n = 3 the form of the
time dependence remains, but the amplitude decreases by a factor of 108.

4.2 Exponential model
G
Let us consider another particular case R + f(G) gravity in form f(G) = f, (1 - Ge?o>. Take into ac-
count equation (8), (10), (14) and

f(G)=—fo<1—€G£°>,f(G) fo g, o,f"(6) = f eG 16 = &6660 (18)

0

pressure p and energy density p in Hubble terms take the form

p, =— f<1— > fOeGG+4f GGH2+4feGoGH2+8f°eGOGH(H2+H) (19)
2 GO GO GO 0
G G G
Dy :& 1—eGo —ZﬁeG_OG—él-f—OzeG_OG'HZ, (20)
2 Go Gy

the graphical dependence of which on the cosmological time ¢ is shown in Figure 3.
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b)  d)

Figure 3. Dependence on cosmic time t: a) pressure p,; b) energy density p,; ¢) p, + p, and d) 3p, + p,.

5 Perturbation analysis

5.1 Power-law model

In this section, we are interested in investigating the power law’s stability through perturbation analysis.
Substituting in (12) (8), (10), and (13) taking into account f(G) = G™", at n = 4, we get equation

H(H + H?) (G2 + 12G(H + H?) H? + 36GH(H + H?)) = 0,

which, in the case of a search for a particular solution in terms of the Hubble parameter, transforms into a
differential equation

Ho(O)b(t) + Hyb(t) + HZ(£)b%(t) = 0, (21)
where b(t) = 1+ 6,(t). From equation (18), we obtain a particular solution describing the perturbation
64(t) inview

1 —
Ho(1+ 8,(0))

where H,, is described by expression (14) and c; is integration constant. Solution (22) is illustrated in Fig-
ure 4.

It should be noted that at ¢c; > 1 perturbation 6,(t) takes the positive value. Perturbation §,(t) for the
most rapidity tend to be zero at ¢; = 1. Perturbation §,(t) takes the negative value at ¢; < 1.

t+ Cq, (22)
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Figure 4. §,(t) dependence on cosmic time t atn = 4 and ¢; = 1.

5.2 Exponential model
Let us research perturbation in exponential model. Substituting in (12), (8), (10), (13) and f(G) =

G
fo (1 - GeG_o) neglecting terms higher than the first order, we obtain the equation

H = —H? (23)
From equation (23), we obtain a particular solution describing the perturbation 6(t) the same as (22).
Conclusions

Here R + f(G) cosmological model was considered in flat, homogeneous, and isotropic Friedmann—
Robertson—Walker space-time. Power-law model and exponential model were chosen as particular cases of
modified Gauss—Bonnet gravity in the f(G) term. We provided energy conditions and made a perturbation
analysis.

In the power-law model, the null energy condition performs, which is depicted in Figure 2a and de-
scribed by p; + p; = 0. Weak energy condition performs and is shown in Figures 2a and 2b. It is described
inequality p; = 0 and p; + p; = 0. Strong energy condition p; + p; = 0 and 3p; + p; = 0 is represented in
Figures 2a and 2d. This condition partially performs because the first inequality performs only. Violation of
this condition provides accelerated expansion. Dominant energy condition p; = 0,—p; < p; < p4 IS shown
in Figures 2b and 2c, and performs. The simultaneous fulfillment of weak and dominant energy conditions
ensures the acceleration mode.

For the exponential model, the null energy condition p, + p, = 0 the same as power-law model. Weak
energy condition p, = 0 and p, + p, = 0 partially performs because the second inequality performs only.
These conditions are shown in Figures 3a and 3b. Strong energy condition p; + p; = 0 and 3p; +p; =0 is
represented in Figures 3a and 3d. Figures 3a and 3c illustrate dominant energy condition p, = 0,—p, <
p2 < po. It not performs for exponential model. In this model, the energy density has a negative value, which
corresponds to cosmology with a phantom field. This behavior provides a superacceleration mode.

By comparing results of energy condition models, we have |p; + p1| < |p, + p2| and |3p; + p1| K
|3p, + p2|. The power-law model f(G) describes the accelerated expansion of the universe at a late stage in
the evolution of the universe and this expansion will be eternal, and the results of the exponential model pre-
dict a transition to the super acceleration regime, that is, the disintegration of the universe in a finite period of
time.

The analysis of the perturbation of the studied models shows that both in the power-law and exponential
models, the perturbations tend to be zero. This ensures a way out of the inflationary stage at an early stage in
the universe’s evolution.
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[LYO. Lpi6a, O.B. Pazuna, H.T. CyiikumOaeBa

YamibIrdH ra3biH KaJNbLIay ApKbLJIbI
KOCMOJIOTHSIIIBIK MOJIeJIbAepli KaluTa Kypy

Maxkanana ®puagman—PobepTcoH—Yokep MeTpHUKachIMEH CHMATTAIFAaH JKa3blK, Oip TEKTi JKOHE M30TPOITHI
KEHICTIK—yaKBIT ()OHBIHAAFHI KBl CATBICTHIPMAJIBIK TEOPUACHIHBIH (Puaun ckamsipel) xxoHe ['aycc—bonHe
(Taycc-boHHe MHBapHaHTBI) TPAaBUTALMACHIHBIH MOJM(HKALMAIAHFAH TEOPUSICHl KOMIO3HIMSACHIHBIH
HOTWKECiHIe maiima OonmraH Mogmenbaep KapacTelpburraH. JKoraprel perti (aycc—boHH wWHBapuaHTBI)
WHBapUaHTTaH TYPaThIH TEOPHSHBI €CENKe ally HOTMXKECiHAEe Maijga OoJaThIH apTHIKIIBLUIBIKTAp, KOCKIMILA
epKIHJIIK JOpeKeciHiH Maiiia OodyblHa Herizjereli, ojap KOCMOJIOTHSUIBIK OakKblIayJapMeH HaKThUIaHFaH
Kimi perti dQQexTTepain 3epTTeNeTiH KXYHeHIH AMHAMHKACBIHA oCepiH 3epTTeyre MyMKIHIIUTK Oeperi.
Artopnap ['aycc—BoHH WHBapHaHTBHIHA ADKCHOHEHIMAABI JKOHE JOPEKeNl Toyesai eKi MOAENAIH KaiTta
KYpPacCTHIPBUTYBIH JKY3€Te achlpFaH, MYHJa aH3al] MOedl peTiHae BelepmrpaccaHblH Kepi 3JUTHIICTIK
(hyHKIUACHIHBIH KOMOMHAIMACH MeH Xa00J mapaMeTpiH CHIAaTTalThIH JopeKeNiK GYHKIHIACH albHFaH. by
OJIeMHIH 0acTarnKpl )koHe KeHiHT1 1oyipaepinaeri Macmrad (akTOPBIHBIH 03TepyiHiH KBa3UIAE3UTEPIIiK 3aHBIH
alyra MYMKiHAIK Oepexmi. ApHaiibl GYHKIUSHBI KoJAaHy YalulBITHHIIK Ta3 Typi — BeliepmTpac ra3siHbIH
KYH TeHJeyiH jKaJmbliayaaH TyblHaaraH. OChIHIaN Toyesniiri 6ap Kyi TeHIeyiH KOlIaHy KBa3HIIEPHOATHI
Onemai anyra MyMKiHAIK 6epesi. YarbIrie ra3slHa Heri3aereH Kyd TeHaeyaepi MoAenbaik KyH TeHaeyaepi
6O0JTBIN TaOBUTAIBI YKOHE ePTe JKOHE Ka3ipri oJIEeMHIH SBOJIOIMACHIH JKAKChl CUIMATTalabl. AJIBIHFAH €Ki KeKe
MOJEIb DHEPIrvusd JOMHUHAHTBIHBIH HIAPTTApPbIH OPbIHAAY YIJ_llH 3ep1‘ren}1i, 6¥J’l SHeMHiH SBOJIIOIUACBIHBIH KCIII
KEe3CHiH/Ie JKOHE epTe dJIEMHIH Ke3eHIH KaMTHTBIH OY3bLTyJap TEOPHSCHIH KOJNAaHa OTHIPBIN Tajay KacayFa
MYMKIHAIK Oepeni. JJopexkerik jkoHe SKCIOHEHINAIIBI MOJEeNbAep YIIiH Xa001 mapamMerpi COHFBI yaKbITTa
ayBITKUIBI, OChUIaiiia FanaM 5BOONUSCHHBIH HHOISLHSIBIK CATBICHIHAH HIBIFY/ bl KAMTaMachl3 eTei.

Kinm co3oep: ®puaman tenneyi, f(G)-rpapurarms, Yamisirud rasel, Beifepiurpace rasel, SHEprUSHBIH
JOMHMHAHTTBUIBIK MIAPTTAPHI, YHBITKY TEOPHSCHI, HHQIISAINS, YAEMeTl KeHEl0.
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ILIO. IIp16a, O.B. Pasuna, H.T. CyiikumbaeBa

PexkoHCTpyKIIMSA KOCMOJIOTHYECKUX MO/IeJeid,
HHCIIMPUPOBAHHAasA 00001eHneM raza Yamibirmnua

B cTaTthe paccMOTpeHBI MOJIeNH, BO3HHUKAIOIIHE B pe3yJIbTaTe KOMIIO3UINK MOANGHUIMPOBAHHON TEOPHH Ipa-
BuTauun ['aycca—bonHe (uHBapuanT ['aycca—bonHe) u 00mielt TeOpUn OTHOCUTEIBHOCTH (CKasip Puuun) Ha
(hoHE MIIOCKOT0, OJHOPOIHOTO U M30TPOIHOTO IPOCTPAHCTBA—BPEMEHH, ONHCHIBAEMOTr0 METpUKOil Ppuama-
Ha—PoGepTcona—Yoxkepa. [IpenmymiecTBa, BO3HHKAIOLINE B pe3yibTaTe MPUMEHEHUS TEOPUH, COAEpKalleH
WHBapUaHTHI BBHICIIETO Mopsaka (MHBapuaHT ['aycca—boHHE), 3aKiI0YaroTCsl B HATMYMU JOMOJTHHUTENBHBIX
cTeneHel cBo0O/Ibl, KOTOPBIE MO3BOJIAIOT U3Yy4YaTh BIMSHUE 3()(HEKTOB MAIOTro MOps/iKa Ha JUHAMUKY HCCIIe-
JTyeMOH CHCTEMBbl, HaXOIAIIMXCS B TOMCKE M MOATBEP)KACHHBIX KOCMOJIOIMYECKHMH HaOIIOJaTeNIbHBIMU
JTaHHBIMU. ABTOpaMHU OCYIIECTBIICHA PEKOHCTPYKLUS JBYX MOJIENIEHl CO CTENICHHON U KCIIOHEHIIMANBbHOU 3a-
BHCHMOCTBIO OT MHBapHaHTa ['aycca—boHHe, r/ie B kadecTBe aH3alla MOJIENH BBICTyNaeT KOMOHHAINA 00pat-
HOHM »mmnradeckod ¢yHkmun Beilfepmrpacca n creneHHO# (yHKIWY, onuchIBaromeil napamerp XaooOma.
3TO0 MO3BOJAET MOJIYYUTh KBAa3HAECHTEPOBCKUI 3aKOH M3MEHEHMsS] MacIITaOHOro (hakTopa B HAYAIBHYIO H
no3HIoK0 Snoxu Beenennoii. [IpumeHenne crienuanbHOW (GYHKIMH HHCITMPHPOBAHO 000OIIEHHEM ypaBHE-
HUSI COCTOSIHMA Tuna rasza Yamisiruaa — razom Belepmrpacca. IlpuMmeHeHre ypaBHEHUsI COCTOSTHUSA ¢ TaKOU
3aBUCHMOCTBIO TTO3BOJISICT MOJTYYUTh KBa3HIIEPHOANUECKYI0 BeeneHHylo. YpaBHEHHS COCTOSIHUS, OCHOBaH-
Hble Ha raze YamibIruHa, SBISIOTCS MOJCIBHBIMH yPaBHEHHSAMH COCTOSIHHSI M XOPOIIO OIMCHIBAIOT 3BOJIIO-
LUIO KaK paHHeH, Tak U coBpeMeHHOI Bceenennoil. [lonydeHHble 1Be YacTHbIE MOJIEIM MCCIEIOBAHbI Ha BbI-
MOJTHEHUE YCIIOBUH 3HEPTOJOMHHAHTHOCTH, YTO JaeT BO3SMOXHOCTbH IPOBECTH aHAIN3 B MO3JHMI 3Tal 3BO-
mouuu BeeneHHOM n ¢ TOMOILBIO TEOPUM BO3MYILEHUI OXBaThIBaolel nepuos panHelt Beenennoit. IToka-
3aHO, YTO JJI CTETICHHOH M SKCIIOHSHIMAIBFHOH MOJeNH BO3MYIICHHS NapaMeTp XaOOna yMeHbInaercs 3a
KOHEYHOE BpeMs, TeM CaMbIM 00ecIeurBast BBIXO/] N3 HHQIIIIMOHHOM CTauK 3BOJIIONNH BeeneHHOM.

Knroueevie cnosa: ypasuenus ®punmana, f(G)-rpasuranus, ra3 Yamisiruna, ras Beliepmtpacca, ycnoBus
3HEProJIOMUHAHTHOCTH, TEOPHS BO3MYIICHUH, HHQIIAIHS, YCKOPSHHOE PACIIUPEHHE.
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