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Acoustic-electrical testing of defects  
in the cement-sand and cement-glass model samples 

A complex method of acoustic-electrical testing of defects in dielectric samples made from cement-sand and 
cement-glass mixtures is discussed. The paper reports the results of studies of changes in the parameters of 
electromagnetic responses and their spectra under pulsed deterministic acoustic excitation of model samples 
with defects in the form of solid-state inclusions. The results of mathematical calculations of the time varia-
tion in the stress-strain state induced in a defective dielectric model sample by deterministic acoustic pulse 
are presented. The relationship is shown between the parameters of the acoustic excitation and the electro-
magnetic response to the impact in a magnetic field. The study revealed that the specific electrical resistance 
of the cement-sand and cement-glass mixtures differs significantly. Excitation of electrical double layers by 
acoustic pulses causes an electromagnetic signal, parameters of which depend on the parameters of the acous-
tic impact and acoustic and electrical properties of the material. As a result, a reduced specific electrical re-
sistance of the mixture increases its conductivity. The numerical calculation of the propagation of the deter-
ministic acoustic pulse showed that its parameters change when it passes through a defect with acoustic im-
pedance different from that of the mixture used. 

Keywords: non-destructive testing, dielectrics, acoustic impact, electromagnetic radiation, magnetic field, 
modeling. 

 

Introduction 

At present, the increasing number of products is manufactured from solid dielectric materials and 
composites. These products are used in various conditions, including extreme ones. Insulators, structural 
dielectrics, concrete structures and other practically used dielectrics require regular non-destructive testing 
to be environmentally friendly. Early detection of defects in dielectric products is crucial to maintaining 
their mechanical and electric strength. The defects in solid materials and products are detected using well-
proven non-destructive testing methods: ultrasonic, acoustic pulse and acoustic emission; electrical and 
electromagnetic; magnetic; X-ray and other methods [1–10]. This variety of non-destructive methods is 
not always efficient for testing of dielectric materials and structures. This is due to close values of the 
acoustic impedance of the media of the product and the defect during ultrasonic sounding and during 
acoustic emission testing of the fracture development; lack of magnetic properties in the majority of com-
posites, including dielectric materials; high X-ray permeability in organic and some inorganic dielectrics, 
and dangerous effect of radiation on the operator’s health. Therefore, complex destructive testing methods 
should be employed based on well-proven algorithms and newly developed ones. Mechanoelectric or 
acoustic-electrical [11–19] conversions in solid-state structures can be successfully used to develop such 
complex testing techniques. The acoustic-electrical test uses contact acoustic sounding of the test object 
and contactless recording of the electromagnetic response to this impact with further amplitude-frequency 
analysis of the electromagnetic signal. External acoustic deterministic pulses or acoustic pulses arising in 
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the material during fracture development induced by mechanical load can be used as a source of vibrations 
[11, 12]. As a result of this action, charges or electrical double layers at the interfaces of media, inclusions 
or blocks, on crack sides or on other structural defects of the dielectric materials emit electromagnetic sig-
nals. 

A mathematical and physical rationale for testing dielectric heterogeneous materials by electromagnetic 
signal parameters is reported in [20]. It is shown that mechanical vibrations induced by a normalized single 
impact cause a displacement current. Experimental studies [21, 22] also indicate that the passage of acoustic 
waves causes EMS generation, which is associated with vibrations of electrical double layers. In this case, 
EMS amplitude-frequency parameters depend on the characteristics of acoustic pulses and the charge state of 
the defects in the form of inclusions. 

Thus, under an external deterministic acoustic impact, defects in the form of solid inclusions or voids 
can be successfully tested with regard to the parameters of electromagnetic responses to this perturbation. 
The paper discusses the applicability of the acoustic-electric method of non-destructive testing for defective 
model composite dielectric materials made from cement-sand (CSM) and cement-glass (CGM) mixtures. 
Solid materials with acoustic impedance different from the impedance of the used CSM and CGM compo-
sites were used as defects. 

Methods of conducting experiments 

For experimental studies of the acoustic-electrical conversion samples were made from a cement-sand 
and cement-glass mixture with a size of (50×50×95)×10–9 m3 with artificial solid parallelepiped inclusions of 
different size (Fig. 1). The samples were fabricated in accordance with [22]. The moisture content of the 
samples did not exceed 1.5 % of the sample weight, the sand grain size was (2.5–8.0)×10–4 m, and the size 
of glass fractions varied in the range of (1.5–2.5)×10–4 m. For EMS measurements, the side sample surface 
of (50×95)×10–6 m2 was laid out into 15 sites. The width of the EMS measurement sites depended on the size 
of the capacitive sensor lobe of the electromagnetic receiver. 

A point impact with a ball weighing 8.59×10–4 kg was applied to the center of the sample end face with 
the area of (50×50)×10–6 m2. The materials used as inclusions to simulate defects, are presented in Table 1. 
The materials were chosen to have their acoustic impedance and electrical resistivity greater or less than z 
and ρ of CSM or CGM. 

 

 

Figure 1. A model sample made from the cement-sand or cement-glass mixture with a solid  
rectangular inclusion with a magnetic field of strength H applied to the mixture material–defect contact 

Four sizes of the rectangular defects used were (1.0×1.0×1.5)×10–6 m3, (1.5×1.5×2.0)×10–6m3, 
(2.0×2.0×3.0)×10–6m3, and (2.5×2.5×3.8)×10–6m3. The axes of the defects were coaxial with the sample axes. 
The largest faces of the defects were parallel to the larger surfaces of the model samples. The sand/glass–
cement ratio was two parts to one part by weight, and the water-cement ratio was 0.7. Before pouring the 
solution, the inclusions were fixed in the mold in the desired position using an elastic dielectric thread. After 
solidification, the samples were stored at (20–22)оС for 28 days. The position of the inclusion in the sample 
was monitored by digital radiography using the PerkinElmer XRD 0822 detector [23]. Changes in the elec-
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trical resistance R of the samples
immittance meter [24]. 

Acoustic 

No. Defect material 

1 Cement-sand mixture (CSM) 
2 Cement-glass mixture (CGM) 
2 Plexiglas (PMMA) 
3 Fluoroplastic (PTFE) 
4 Ebonite 
5 Glass, flint 
6 Magnetite Ore (75 %) 
7 Duralumin, D16T 
8 Brass, L59 
9 Carbon steel 

 
The resistance measurement e

calculated by the formula 
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[26] or from the Tektronix 2024B oscilloscope to the computer for further amplitude-frequency analysis us-
ing the developed and standard programs. 

 

 

Figure 3. Block diagram of the stand for acoustic excitation  
of electromagnetic signals in the test model samples 

In the dynamic acoustic pulse excitation system, a spring device was used to accelerate the ball. The ball 
hit a hardened steel plate 2.5×10–3 m thick with an acoustic impedance z and hardness close to zb of the ball, 
which was in acoustic contact with the sample. The velocities of the flight and rebound of the ball were deter-
mined using two optical pairs that included a light emitting diode LED and a photodiode PD installed at a dis-
tance of 5×10–2 m from each other. The impact excited an acoustic signal of certain amplitude and time pa-
rameters in the plate. From the plate, the acoustic pulse passed through a layer of mineral oil into the test sam-
ple. Mineral oil was also used to provide the acoustic contact of the sample with a piezoelectric receiver of the 
acoustic signals transmitted through the sample. The primary acoustic pulse excited by the ball was close to a 
bell-shaped one, and its base duration was 50×10–6 seconds. Analog signals from the measuring system of the 
ball flight were fed to the measuring eight-channel NI BNC-2120 module. After that, the EMS was transmitted 
to the computer. The battery pack provided 6V voltage across the LED and PD of the measuring system. The 

ball velocity at the moment of impact 2
iV  and that of the rebound from the target 2

bV were calculated with re-

gard to the time of the ball flight and the distance between the optoelectronic pairs. The obtained values of the 
velocity and the ball mass (m), as well as the approximation of elastic collision of the ball with the grounded 
metal plate were used to calculate the acoustic impact energy transmitted to the sample as 

  (2) 

where Еexc is the energy induced in the sample upon ball impact. The energy losses of the acoustic pulse in 
the plate were not considered. The spring compression was changed to induce the acoustic impact energy in 
the test sample within (8–30)×10–3 J. The longitudinal speed of sound was measured with a piezoelectric 
emitter using the same stand (Fig. 3). 

EDS operating in the range from 1 to 100 kHz was used as a receiver of electromagnetic signals. At the 
output of the capacitive sensor, the signal could be amplified 10 or 100 fold. The EDS input sensitivity was 
5×10–4 V. The size of the receiving plates of the sensor was (0.5×3.0)×10–4 m2. During the experiments, the 
distance from the surface of the test samples to the nearest plate of the electromagnetic sensor was set within 
(1–2)×10–3 m. The electromagnetic sensor for measuring electromagnetic signals along the entire sample 
length was enabled to move along its central axis sequentially over the measurement sites from 0–1 to 14–15 
and backwards. The initially set distance between the receiving plate of the electromagnetic sensor and the 
sample surface was maintained stable during EMS measurements using the optical stage dials and the control 
plate of a given thickness. A special program was used to normalize EMS to the perturbation created by the 
ball impact, and the fast Fourier transform (FFT) program was used to perform its spectral analysis. 

 2 2 ,
2exc i b

m
E V V 
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Theoretical and experimental research 

Numerical and experimental modeling was carried out for testing CSM and CGM model samples, in-
cluding those with rectangular defects. Initially, numerical modeling was performed using the concept of 
continuum mechanics for elastic wave propagation in a dielectric sample under excitation by deterministic 
acoustic pulses. The computational algorithm for determining the parameters of the stress-strain state (SSS) 
of the model sample is based on the relations of the mechanics of the deformed body. In the general case, a 
system of equations was used, describing the behavior of a deformable solid in space and includes well-
known equations, continuities, and relations between the components of the total strain rate tensor. In addi-
tion, the calculations employed the constitutive relations that specify the relationship between the compo-
nents of the stress and strain tensors: 

  (3) 

 ,  (4) 

where  is spatial coordinates; ij  is stress tensor components; is total strain tensor components. 

The numerical implementation was carried out according to a noncentral difference scheme of the se-
cond order of accuracy with respect to the space and time steps [27]. The accuracy of the numerical results 
was assessed by the internal convergence of the results when changing the parameters of the finite-difference 
grid and time integration steps [28]. The boundary conditions were set in accordance with the laboratory ex-
periments. In calculations, the excitation corresponded to the experiment acoustic pulse in shape, amplitude, 
and duration. The calculations were performed for the sample (5.0×5.0×9.5)×10–6 m3 in size with real elastic 
properties. For calculations, the following values of CGM  properties were set: density  
of (1.9–2.3)×103 kg/m3; modulus of elasticity of 4×1010 N/m2; Poisson’s ratio of 0.2; longitudinal wave ve-
locity of 3.2×103 m/s. The calculation was performed for the impact onto the center of the sample end face. 
An elastic calculation model was used. The numerical simulation results were visualized using a special 
graphics package. 

Figure 4 presents the results of modeling the perturbation propagation over the simulated region. The 
results were visualized as isosurfaces. At time 5×10–6 s (Fig. 4a), perturbation propagates over the homoge-
neous region in the form of a hemisphere, which corresponds to the general concepts of the mechanics of 
acoustic wave propagation. For clarity, the interaction between the wave front and a carbon steel insert with 
sizes of (2.5×2.5×3.8)×10–6 m3 was considered. Figure 4b shows how the leading edge of the wave meets a 
harder insert and bends it at lateral sides. At the next propagation stage, the wave front moves faster along a 
more elastic insert, Figure 4c. 

 

 

Figure 4. Propagation of elastic perturbation in the model in time:  
a) 5×10–6 s; b) 10×10–6 s; c) 12×10–6 s. 

Thus, the inserts with elastic properties different from those of the base material change the of the wave 
process pattern. Changes in the elasticity modulus and material density produce the greatest effect. For ex-
ample, the ratio of the elasticity moduli of carbon steel and the base material differs more than 10 fold. The 
smaller the difference in elasticity moduli, the less sensitive the wave process to inhomogeneities. The sums 
of rates were calculated for carbon steel, fluoroplastic, magnetite ore, and glass (flint) defects of various siz-
es. Figure 5 presents the example of the calculated changes in the integral characteristics of the sums of dis-
placement rates in layers of CSM (Fig. 5, a, b, c) and CGM (Fig. 5, d, e, f) that are close to 75 % magnetite 
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А.А. Беспалько, Д.Д. Данн, М.В. Петров, Е.К. Помишин 

Цемент-құм жəне цемент-шыны модельдік үлгілерінің  
ақауын акустикалық-электрлік тестілеу 

Цемент-құм жəне цемент-шыны қоспаларының диэлектрлік үлгілерінің ақауларын акустикалық-
электрлік тестілеудің кешенді əдісі талқыланған. Мақалада қатты күйдегі қосылыстар түріндегі 
ақаулары бар модельдік үлгілердің импульсті детерминирленген акустикалық қозуы кезінде 
электромагниттік дабылдардың параметрлері мен олардың спектрлерінің өзгеруін зерттеу нəтижелері 
қарастырылды. Детерминирленген акустикалық импульспен қозған кезде ақаулы диэлектрлік 
модельдік үлгінің кернеулі-деформацияланған күйінің уақыттық өзгеруінің математикалық 
есептеулерінің нəтижелері келтірілген. Сынақ объектісінің акустикалық қозу параметрлері мен магнит 
өрісіндегі осындай əсерге электромагниттік дабыл арасындағы байланыс көрсетілген. Зерттеу бары-
сында цемент-құм жəне цемент-шыны қоспаларының электрлік кедергісі айтарлықтай ерекшеленетіні 
анықталды. Қос электр қабаттарының акустикалық импульстарының қозуы электромагниттік 
дабылдың шығарылуына əкеледі, оның параметрлері акустикалық əсер ету параметрлерімен, сондай-
ақ материалдың акустикалық жəне электрлік қасиеттерімен анықталады. Нəтижесінде, егер қоспаның 
меншікті кедергісі азайтылса, онда оның өткізгіштігі артады, детерминирленген акустикалық 
импульстің таралуын сандық есептеу пайдаланылған үлгінің қоспасының кедергісінен өзгеше 
акустикалық кедергісі бар ақаудан өткен кезде оның параметрлерінің өзгеруін көрсетті. 

Кілт сөздер: беріктік бақылау, диэлектриктер, акустикалық əсер, электромагниттік эмиссия, магнит 
өрісі, модельдеу. 

 

А.А. Беспалько, Д.Д. Данн, М.В. Петров, Е.К. Помишин 

Акустико-электрическое тестирование дефектности цементно-песчаных  
и цементно-стекольных модельных образцов 

Обсужден комплексный метод акустико-электрического тестирования дефектности диэлектрических 
образцов из цементно-песчаной и цементно-стекольной смесей. Рассмотрены результаты исследова-
ний изменения параметров электромагнитных откликов и их спектров при импульсном детерминиро-
ванном акустическом возбуждении модельных образцов с дефектами в виде твердотельных включе-
ний. Представлены результаты математических расчетов изменения во времени напряженно-
деформированного состояния дефектного диэлектрического модельного образца при его возбуждении 
детерминированным акустическим импульсом. Показана связь параметров акустического возбужде-
ния объекта тестирования и электромагнитного отклика на такое воздействие в магнитном поле. В 
процессе исследований установлено, что удельные электрическое сопротивление цементно-песчаной 
и цементно-стекольной смесей существенно отличается. Возбуждение акустическими импульсами 
двойных электрических слоев приводит к излучению электромагнитного сигнала, параметры которого 
определяются параметрами акустического воздействия, а также акустическими и электрическими 
свойствами материала. В результате, если уменьшить удельное сопротивление смеси, то увеличится 
ее проводимость. Численный расчет распространения детерминированного акустического импульса 
показал изменение его параметров при прохождении через дефект с отличающимся акустическим им-
педансом от импеданса используемой смеси образца. 

Ключевые слова: неразрушающий контроль, диэлектрики, акустическое воздействие, электромагнит-
ная эмиссия, магнитное поле, моделирование. 

References 

1 Mason, W.P. (1964). Physical Acoustics. V. 1. New York: Academic Press. 

2 Klyuev, V.V. (2008). Nerazrushaiushchii kontrol [Non-Destructive Testing]. Moscow: Mashinostroenie [in Russian]. 

3 Blitz, J. (1997). Electrical and Magnetic Methods of Non-destructive Testing. Springer Netherlands. 

4 Ida, N. (1995). Numerical Modeling for Electromagnetic Non-Destructive Evaluation. Springer US. 

5 Mikheev, M.N. & Gorkunov, E.S. (1993). Magnitnye metody strukturnogo analiza i nerazrushaiushchego kontrolia [Magnet-
ic methods of structural analysis and non-destructive testing]. Moscow: Nauka [in Russian]. 

6 Ficilli, F. (2012). Non-Destructive Testing by Magnetic Techniques. LAP Lambert Academic Publishing. 

7 Yurov, V.M., Goncharenko, V.I., Vasiliev, S.L., Dmitriev, S.A., & Yurgenson, S.A. (2019). X-ray computed tomography-
based analysis of impact damage propagation in composite materials. Eurasian Phys. Tech. J., 16(2), 31–35. 



A.A. Bespalko, D.D. Dann et al. 

16 Вестник Карагандинского университета 

8 Surzhikov, A.P., Pritulov, A.M., Lysenko, E.N., Sokolovskii, A.N., Vlasov, V.A., & Vasendina, E.A. (2012) Influence of sol-
id-phase ferritization method on phase composition of lithium-zinc ferrites with various concentration of zinc. Journal of Thermal 
Analysis and Calorimetry. V. 109, No. 1, рр. 63–67. 

9 Carnì, D.L., Scuro, C., Lamonaca, F., Olivito, R.S., & Grimaldi, D. (2017). Damage analysis of concrete structures by means 
of acoustic emissions technique. Composites Part B: Engineering. 115, 79–86. 

10 Yamada, I., Masuda, K., & Mizutani, H. (1989). Electromagnetic and acoustic emission associated with rock fracture. Phys. 
Earth Planet. Int., 57. 

11 Nazarov, K.M., Kichanov, S.E., El Abd, A., Taman, M., & Kozlenko, D.P. (2020). Study of water infiltration into cement-
based mortars using real-time thermal neutron radiography. Eurasian Phys. Tech. J., 17(1), 39–45. 

12 O’Keefe, S.G., & Thiel, D.V. (1995). A mechanism for the production of electromagnetic radiation during fracture of brittle 
materials. Phys. Earth Planet. Int., 89(11), 127–135. 

13 Dann, D.D., Petrov, M.V., Fedotov, P.I., & Sheveleva, E.A. (2021). Changes in the Parameters of the Electromagnetic Re-
sponse of Model Dielectric Samples with Air Cavity Defects under External Deterministic Acoustic Impact. Bulletin of the Universi-
ty of Karaganda-Physics, 101(1), 12–17. 

14 Lacidogna, G., Carpinteri, А., Manuello, A., Durin, G., Schiavi A., Niccolini G., et al. (2010). Acoustic and electromagnetic 
emissions as precursor phenomena in failure processes. Strain, 47, 144–152. 

15 Fursa, T.V., Lyukshin, B.A., & Utsyn, G.E. (2015). Theoretical investigations of the influence of defects under pulsed me-
chanical excitation of concrete. Russian Physics Journal, 1658–1661. 

16 Kyriazopoulos, A., Anastasiadis, C., Triantis, D., & Brown, C.J. (2011). Non-destructive evaluation of cement-based materi-
als from pressure-stimulated electrical emission. Preliminary results. Construction and Building Materials, 29(4), 1980–1990. 

17 Koktavy, P. (2009). Experimental study of electromagnetic emission signals generated by crack generation in composite ma-
terials. Measurement Science and Technology, 20(1), 015704. 

18 Stergiopoulos, C., Stavrakas, I., Hloupis, G., Triantis, D., & Vallianato, F. (2013). Electrical and Acoustic Emissions in ce-
ment mortar beams subjected to mechanical loading up to fracture. Engineering Failure Analysis 35, 454–461. 

19 Bespal’ko, A.A., Isaev, Y.N., & Yavorovich, L.V. (2016). Transformation of acoustic pulses into electromagnetic response in 
stratified and damaged structures. J. Min. Sci., 52(2), 279–285. 

20 Bespal’ko, A.A., Shtirts, V.A., Fedotov, P.I., Chulkov, A.O., & Yavorovich, L.V. (2019). Modelling of Infrared Glow in 
Rock Holes. J. Nondestr. Eval., 38, 30–29. 

21 Fursa, T.V., Lyukshin, B.A., & Utsyn, G.E. (2011). Experimental and theoretical investigation of the characteristics of an 
electric response to an elastic impact excitation of piezo-containing heterogeneous materials. Russian Journal of Nondestructive Test-
ing. 47 (10), 675–679. 

22 Bespal’ko, А.А., Surzhikov, A.P., Dann, D.D., Utsyn, G.E., Petrov, M.V., & Pomishin, E.K. (2021) Modelling Acoustic–
Electric Nondestructive Testing for Defects in Dielectric Materials. Russian Journal of Nondestructive Testing, 57(2), 85–95. 

23 X-ray flat panel detector PerkinElmer XRD 0822. perkinelmer.com. Retrieved from www.perkinelmer.com 

24 Immittance’s meter LCR-819. electronpribor.ru. Retrieved from www.electronpribor.ru/catalog/53/lcr-819.htm#specification 

25 Korolev, V. M. (1973). Aperiodicheskii pezodatchik dlia ultrazvukovykh defektoskopov [Aperiodic piezoelectric sensor for 
ultrasonic flaw detectors]. Defectoscopy, 4, 12–18 [in Russian]. 

26 Installation guide BNC-2120. ni.com. Retrieved from https://www.ni.com/pdf/manuals/372123d.pdf 

27 Warming, R.F., Kutler, P., & Lomax, G. (1973). Non-central difference schemes of the II and III order of accuracy for solv-
ing nonlinear hyperbolic equations. Rocket Technol. Cosmonautics, 11(2), 76–85. 

28 Barashkov, V.N., Gerasimov, A.V., & Lyukshin, B.A. (1998). Predicting the destruction of industrial installations. Russian 
Physics Journal, 10, 657–661. 

29 Bespal’ko, A.A., Fedotov, P.I., & Yavorovich, L.V. (2013). Investigation and control of magnetization of magnetite ore sam-
ples by electromagnetic signal parameters. Test. Diagn., 13, 221–224. 

 


