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Mathematical modeling of dispersed media flows in the presence of nucleation,
coagulation and phase transitions

A model of motion of a gas-dispersed medium in the presence of processes of nucleation, coagulation and
phase transitions has been constructed. A homogeneous nucleation model is used to describe the nucleation
process. It is believed that the process of cluster coagulation occurs due to their Brownian motion. The analy-
sis of the solution of the coagulation equation in the particular case of monodisperse clusters in the presence
of a source and sink of particles is carried out. To determine the rate of phase transitions the Hertz-Knudsen-
Langmuir formula is used. The calculations were carried out on the basis of a quasi-one-dimensional model
within the equilibrium approximation (when the velocities and temperatures of the phases coincide). As a re-
sult of the study the main properties of the flow of a two-phase mixture in a channel in the presence of nu-
cleation, coagulation, and phase transformations have been established. It is shown that the vapor temperature
increases along the channel and reaches the saturation temperature at some distance from the channel en-
trance. Calculations have shown that the coagulation process has a rather strong effect on the distribution of
cluster sizes along the channel.
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Introduction

In practice there are often processes in which in the initial state the working medium is single-phase,
for example, in the form of a gas (vapor), and during the process under study conditions are created for
the appearance of a new phase in the form of drops (nuclei) [1-3]. It is these processes that determine the
initial stage of phase transitions in single-phase (in the initial state) media (for example, in supercooled va-
por). Fluctuation, nucleation and further condensation growth of clusters in a supersaturated vapor is one of
the most important processes leading to the nucleation and development of a dispersed phase. Note that the
problem of mathematical description of the process of nucleation remains relevant to this day. Recently it has
been actively discussed in connection with the study of the growth of nanoclusters in dispersed systems
[2-5].

The nuclei of the liquid phase that appeared as a result of nucleation are rather small (nanoscale) and
therefore are subject to Brownian wandering. Brownian wandering leads to their mutual collision, therefore
it is one of the main constantly acting mechanisms that contribute to the coagulation of microdroplets. Coag-
ulation (fusion) of particles is one of the main reasons for the evolution of dispersed systems, which include
various mixtures of a medium (gaseous or liquid) with particles (solid or liquid). This phenomenon is ob-
served in various physical situations and affects the growth of clusters in solutions, gas-dispersed systems
[6-8].

Evaporation and condensation processes in various media are used to obtain nanomaterials (in particu-
lar, in the synthesis of carbon nanotubes), as well as to obtain nano- and ultradispersed particles in expanding
channels due to nucleation and their growth [9-13].

Thus, the study of flows of two-phase systems in channels of constant and variable cross-sections in the
presence of various processes (nucleation, coagulation of nuclei, phase transitions) is of theoretical and prac-
tical interest and is relevant.

In what follows, along with the term “nucleus”, we will also use the terms “cluster” or “particle”.

Homogeneous nucleation kinetics

In the presence of foreign particles (impurities, ions, etc.), vapor condensation mainly occurs on impuri-
ty particles (heterogeneous nucleation). In this case it is enough just to create a state of supersaturation. In a
pure supersaturated vapor the initial state is metastable and the condensation process begins only when nu-
clei of the liquid phase (microdroplets or clusters) appear with a size greater than a certain critical value,
since supercritical clusters are stable and it is thermodynamically advantageous for them to grow further
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(homogeneous nucleation) [1, 3]. The molecular kinetic theory of the homogeneous nucleation process was
laid down in the works of a number of researchers. This theory is based on the fact that in a gas, as a result of
fluctuations in the concentration of molecules in their chaotic motion, clusters are continuously formed and
destroyed (microdroplets in supercooled vapor). Further, only spherical clusters will be considered. In the
case of a Maxwellian velocity distribution of molecules, the distribution of these clusters on the radius is de-
scribed by the Gibbs formula

oz
N(a)=N,exp _oz(a) ,
kgT
where N, is number of carrier phase molecules per unit volume, &, is Boltzmann’s constant, I"is carrier me-
dium temperature, 5Z(a) is the so-called work of creating a cluster of radius a. The work 8Z(a) is equal to

the change in the Gibbs thermodynamic potential for the substance included in the cluster, taking into ac-
count the contribution to create the surface of the liquid phase [1]

4 5 2
8Z(a) = ™ PyAz +4ma"G, Az=z,(p,T)-z/(p.T)-
Here z is Gibbs potential, ¢ is surface tension, p3 is density of condensed phase. In the metastable state,
when z, <z, (supercooled steam or superheated liquid) 6Z(a) has the maximum at the a=a,
20

4 3
Ay ==" ", 8Z(a)=E, =—ma,c.
p,Az 3

The value of a, is called the critical radius of nuclei, and the value £, is the work of creating a critical

nuclei. Thus, if a cluster with a size a@>a, arises in the metastable carrier phase, then it should grow, since
this leads to a decrease in the thermodynamic potential of the system. Such a supercritical cluster may turn

out to be the nucleus of a new dispersed phase. Subcritical clusters with a radius @ <a, should disappear,
since this also leads to a decrease in the thermodynamic potential. Hence, it follows that the emergence of

“viable” nuclei is associated with overcoming the potential or activation barrier £, , so this value serves as a

measure of the stability of the metastable state of the system, as well as a measure of the probability of the
fluctuation appearance of a new dispersed phase. Using the linear expansion of the Gibbs potential near the
saturation state along the isotherm for supercooled vapor, we obtain [1]:
° 2
20p, 16m L. X
_ Is — E.- 53 Prs — - p:S ’ 1)
(p—pr)1=py) 3 (p—p)d=pyy) Pas

a, =

where p; , p,, are real densities of the gaseous and liquid phases at saturation. The concentration of critical
nuclei is determined by the formula

E
N(a,)=N, =N exp| —— |. 2)
kgT
One can imagine the following sequence of the dispersed phase clustering process [1, 9]. With an in-
crease in supersaturation the size of critical nuclei decreases and the probability of their occurrence increas-
es. The onset of the phase transition is determined by the probability of the appearance of nuclei of precisely
the critical size. The rate of formation of nuclei of critical size is high and, based on (2), amounts to approx-

imately 10" nuclei per unit volume, and therefore, despite their small size (a, ~10” m), the total surface on

which condensation occurs is rather large. Due to the rapid formation of nuclei and their further growth,
there is an intense increase in the mass of the liquid phase and the release of heat. Usually the appearance of
even a small amount of liquid can significantly affect the flow parameters. The release of heat leads to a de-
crease in the degree of supersaturation, as a result of which the formation of new nuclei stops, and further
clustering occurs already at the newly formed condensation centers. So, all condensation centers arise, as a
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rule, at the very beginning of the nucleation process, when a sufficiently large supersaturation takes place.
After that, the transition from the metastable state to the saturation state can occur rather quickly and be of a
discontinuous nature. It follows that the clustering process in high-speed streams can be divided into two
stages. At the first stage the decisive factor is the formation of nuclei of a critical size; at the second the pro-
cess of condensation growth of newly formed nuclei, when nucleation can be ignored. Although in some
cases both processes occur simultaneously, such a division seems to be quite reasonable.

Note that the problem of mathematical description of the process of nucleation remains relevant to this
day.

The equation of coagulation

Small (nanoscale) particles react to random molecular fluctuations in the density and average velocity
of the molecules of the medium, therefore they are constantly in irregular (Brownian) motion. Brownian
wandering leads to their mutual collision, therefore it is one of the main constantly acting mechanisms that
contribute to the coagulation of small particles. When constructing a mathematical model of the coagulation
process, the following physical assumptions are imposed on the dispersed system [7, 8]: the number of parti-
cles is large enough to apply the distribution function of the number of particles by mass; the dispersed sys-
tem is so rarefied that only pair collisions of particles can be considered, and triple and higher-order interac-
tions can be neglected; particles of a dispersed system form a chaotic set. These conditions are necessary for
the statistical description of the system and are important for simplifying the mathematical modeling of the
process under study. A discrete version of the kinetic equation of coagulation was first formulated in 1916 by
the Polish scientist M. Smoluchowski.

Note that sometimes (for example, in the case when liquid drops act as particles) it is convenient to
write down the coagulation equation in terms of the volumes of particles, which in the continuous version
has the form

_d”g”) - %! K(&.v = 0)n(d.0)n(v — d.6)dd — IK (@.)n(d,Dn(v,0)d )

where v, ¢ are the particles volumes, K is coagulation kernel (is symmetric in its arguments), n(v, ¢) is num-
ber of particles with the volume v in per unite of volume of mixture. Equation (3) is a nonlinear integro-
differential equation. To date, a significant number of approximate and numerical methods for solving the
kinetic equation of pair coagulation have been developed. However, a closed analytical solution can be ob-
tained only for model kernels [6-8].

To determine the total number of particles per unit volume, it is necessary to integrate the value of
n(v,t) over all volumes of particles

N@) = j n(v,0)dv.
0
Then the change in the total number of particles over time will be equal to

dN(t 15 %
WD __ L K, omv.0m(@,dvds. @
dt 29 9%

If spherical clusters coagulate by the collisions due to Brownian motion, then the kernel of the kinetic

coagulation equation (3) has the form [5]
K(v,,v,)=4n(D, +D,)(a, +a,) >
where a1, as, vi, vo, D1, D, are radii, volumes and diffusion coefficients of particles. In the case of coagula-
tion of monodisperse spherical particles (when D,=D, =D, a;=a,=a) the coagulation core will take on a sim-
ple form K =16nDa. The particle diffusion coefficient is determined from the theory of Brownian motion
developed by Einstein [5]. According to this theory
k,T
6mua
where u is viscosity of carrier medium. Thus, the coagulation kernel in the case of monodisperse spherical
particles subject to Brownian wandering will finally be written in the form
K=K, = 8 k5T .
3p

D:
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In this case, the equation for the total number of particles in the dispersed system (4) takes the simpler form
aN _ Ky o (5)
dt 2
If the sizes of the clusters are very small and close to the mean free path of the molecules of the medi-
um, the force of resistance to the motion of the particle should be less than that predicted by Stokes' law.
This effect is usually taken into account using the Cunningham-Millikan correction [5]. Then for the coagu-

lation kernel we have

K,

8 k,T N .
=~ ‘; Cv> C, =1+a{A+Qexp(—;J}‘

If there is a constant or variable source of particles in a dispersed system (for example, due to the pro-
cess of nucleation or condensation) or a sink of particles (for example, due to evaporation, deposition of par-
ticles on various surfaces or gravitational sedimentation), then equation (5) is modified and written in form

dN K, .,

dt v 2 N (©)
where v is the rate of appearance (y>0) or disappearance (y<0) of particles per unit volume of the mixture.
Since the coalescence of particles (liquid droplets) does not change the total volume of the dispersed phase,
the change in the volume of the dispersed phase in the system is caused only by the appearance of new parti-
cles due to the source or their disappearance from the system in the presence of a drain. For simplicity, let us
assume that particles that reappear due to a source or disappear due to a sink are of the same size as the co-
agulating particles (this assumption is valid, at least in the case of particle sink or at the beginning of the co-
agulation process in the presence of a source). Then, for the volumetric content of the dispersed phase «,,

the following equation can be written

dOL 2 4 3 4 3
—==—ma’y, O,=—7a N.
a3V My
Hence, taking into account Eq. (6), we obtain an equation for the rate of change in the radius of particles
K
di =_04N. (7
dt 6

From (6) it follows that at a constant positive value of y, the concentration of particles tends to an equi-
librium value with time N = /2y / K , and this equilibrium state is stable, since

a—F<o, F=\y—&N2-
ON 2
In the simple case Ky=const, the Eq. (6) has an exact solution, which can be written in dimensionless varia-
bles as
N:Ma N:i’ Nw: Z\V’ A=1+]X09 0= 2\VK09 (8)
Aexp(wt)+1 N, K, 1-N,

where , is dimensionless initial concentration of particles. From (8) it follows that the concentration of

particles reaches its limiting value N =1 over infinite time. Taking into account the expression (8), Eq. (7)
has the following solution, which shows the law of variation of the radius of coagulating particles

E:[ Aexp(wt)+1 } . oo 9)
(A+Dexp(wt/2)

a
Here a is initial radius of particles. At the large time, when w#>>1 the particle radius changes according to
the law

A+1
At a constant negative value y<0 the equilibrium state for a dispersed system does not exist and the
concentration of particles tends to zero with time. In this case, the equation for the concentration of particles
takes the form

1/3
a= (ij exp(wt/6).

dN K
—=—0——2N*, (p=y, ¢>0).
dt 2
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The solution of this equation is the function

. _ 1 |2
N=1 Btan(oot/Z), v N, p=—— =9 0=,/20K, . (10)

1+;tan(0)t/2) Ny No VK,

Hence it follows that the concentration of particles reaches zero in a finite time #, =(2/ w)arctan(1/ B).
Moreover, with increasing parameter B, the time of disappearance of the dispersed phase in the system de-

creases and tends to the limiting value 7, = /. This means that the presence of a sink, even of infinitely

low intensity, will lead to the disappearance of particles (a drop in the concentration of particles to zero) in a
finite time. In the presence of a dispersed phase drain for the particle radius we have the following formula
1/6

2
__ [1+(1/ B)tan(wt / 2)] | an

1+ [tan(wt / 2)]

The limiting particle radius corresponding to the instant of disappearance =1, can be calculated by the

16
E(t*):(1+;) )

From the last formula it follows that with an increase in the parameter B the limiting radius
of particles decreases. Figure 1 below shows the approximate behavior of solutions (8) and (9) corresponding
to the presence of a source of new particles in the mixture for various values of the initial concentration of
particles ,=0 (curve 1), 0.5 (2), 2 (3), 5 (4). Note that although the concentration of particles tends to

a finite limiting value over time, the size of the clusters increases theoretically indefinitely. Figure 2 illus-
trates the behavior of solutions (10) and (11) corresponding to the presence of a particle sink in the dispersed
system. Curves /-6 correspond to the values of the parameter B=0.01, 0.05, 0.1, 0.25, 0.5, 1, respectively.
In Figure 25 the points where the curves end correspond to zero particle concentration.

formula

a b

457

407

35¢

3.0 4

257

Figure 1. The graphs of dependency (8) (@) and (9) (b): curves 1 —]VO =0;2-0.5,3-2,4-5
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Figure 2. The behavior of the solution (10) (a) and (11) (b): curves / - B=0.01; 2-0.05; 3-0.1; 4-0.25; 5-0.5; 6 - 1

Kinetics of phase transitions

Analysis of the processes of entrainment and deposition of vapor molecules at the interface leads to the
Hertz-Knudsen-Langmuir formula for the resulting intensity of phase transitions [1]

B

€ —W(p—ps)’

where p is pressure in gas, p,, T, are the saturation pressure and temperature, R, iS gaseous constant,
B, 1s accommodation coefficient, showing the fraction of adsorbed vapor molecules falling on the surface
of the liquid (the remaining fraction 1- B, is specularly reflected from the surface). The accommodation co-
efficient depends on the contacting phases and varies in a wide range (from very small values to values close
to unity). In formula (12) the saturation temperature corresponds to a given vapor pressure 7, =T (p).

The dependence of the phase saturation temperature on pressure satisfies the Clapeyron-Clausius differ-

ential equation [1]:
M_R(I_IJ (13)

(12)

dp 1 \pi, pa
Here /(p) is heat of vaporization. Taking into account the Clapeyron-Clausius equation, the intensity of the
phase transition determined by formula (12) can be expressed in terms of superheating (for evaporation) or
supercooling (for condensation)

T -T k. —_Bulpr (14)

&, = Kﬁ ? B~ :
T, J27R,T,

The equations for dispersed mixture flows

Thus, taking into account the assumptions and equations given in the introduction and previous sec-
tions, the following system of equations can be written to describe the flow of a dispersed mixture in the
quasi-one-dimensional stationary case in the presence of processes of nucleation, coagulation of nuclei, and
phase transitions:

d K
am ==Jp> T 122 @Z__OHZSa (15)
dx dx dx
dv_ _dp di dp . di dp
m—=-S—", m-—Lt=ayvS——J,(,—i), m—==0,v5—, (16)
dx dx ' dx U dx 2l =h) * dx 2 dx
4
m=m+my, mg=p,v,S, P =P, k=12, a +a,=1, O‘zzgna%’l, K, ZS;CBT.
My
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Here the subscripts 1 and 2 refer to the parameters of the gaseous and condensed phases, respectively;
@@ et are real and reduced density, volumetric content and phase enthalpy; p, v, n are pressure in the gas,
velocity of mixture, concentration of nuclei; x, S(x) are longitudinal coordinate and cross-sectional area of
the channel; J, is the intensity of the phase transition, K is the coagulation coefficient of the droplets.

Note that due to the small size of the nuclei, the velocities and temperatures of the carrier and condensed
phases can be assumed to coincide with each other (vi=v,=v, T\=1=7).

To close the system (15), (16) it is necessary to specify the thermodynamic equations of state of the
phases. Here the gas will be considered calorically perfect with constant heat capacity, and the substance of
the condensed phase — incompressible. Then we will have [1, 14-15]:

— 1- 1|2 [
N = 1 Btan(mt/2) , W= N , B:F K_(p , = 2([)K0 . (10)
0 0

1+itan(ool/2) N
B

p=p:RT, L =ly+c(T=1)), i=by+c,(T-T))+(p—py)p;, (17)
(p3,c ey, R = const ),
where ¢, ¢, are heat capacities of gaseous and dispersed phases; R is gaseous constant; i, i, , T,» p,
are parameters of the medium in some fixed (for example, initial) state, relative to which all changes are
counted. It should be borne in mind that the enthalpy of vapor in the general case depends on the pressure
and is related to the enthalpy of the liquid phase. In cases where the pressure and temperature are changing in
not very wide ranges, and the pressures themselves are not very high one can get by with the model of a
calorically perfect gas (17). In this case the necessary condition of suitability (17) is provided if the depend-
ence for the heat of vaporization is described by the following formula [1]:
1(p) = 1(py) = (¢ = e NI (P) =T (P ) = (P = P)/ P3 - (18)
For the saturation temperature 7 (p) of the phases we have the Clapeyron-Clausius equation (13).
The phase transition intensity is defined as
J, =4na’ng,S , (19)
where ¢, is rate of the phase transition per unit area of the interphase surface, which is determined by the
formula (14).
To formulate the problem let us set the following initial conditions at the entrance to the channel:

— 1- 1|2 [
N = 1 Btan(mt/2) , N = N , B:F K_(p , = 2([)K0 . (10)
0 0

1+itan(ool/2) N
B

x=0, a=a,, n=N,, p=p,s T =Ty<T,» v=vy» S=8, (I.=T.(p,)=T,) (20)
Here ¢, N, are critical radius and concentration of nuclei corresponding to the initial vapor supersaturation

at the channel inlet and calculated by formulas (1) and (2).

The system of equations (15), (16) with closing relations (13), (17-19) and initial conditions (20) repre-
sents the Cauchy problem for calculating the mixture flow in a channel of variable cross-section in the pres-
ence of nucleation processes, coagulation of nuclei (clusters) and phase transitions. This system has the fol-
lowing first integrals

oV oY
m +m, =const, m,|i,+— |+m,|i, +— |=const, (21
2 2

reflecting the laws of conservation of mass and energy of a dispersed mixture. They can be used to check the
results of numerical integration of system (15), (16).

Thus, the constructed mathematical model makes it possible to calculate the flow of a condensing me-
dium in the presence of processes of nucleation, coagulation of nuclei, and phase transitions in the quasi-one-
dimensional approximation.

The calculation results and their analysis

It is not possible to find an analytical solution of the problem formulated above. Therefore, below we
analyze some of the calculation results obtained by numerical integration of the system by the Runge-Kutta
method of the fourth order of accuracy. The first integrals (21) were used to control the accuracy of the ob-
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tained solutions. The calculations were carried out for water vapor and water droplet nuclei. The initial val-
ues of the governing parameters at the channel inlet are as follows: pressure p=1 MPa, saturation tempera-
ture corresponding to this pressure [16] T,=453 K, vapor supercooling degree is 0=(T,—10)/T,=0.044. The

critical nucleus radius and critical number of clusters calculated by formula (1), (2) are equal to @,=0.6 nm,

N,=10". For convenience, the velocity of the medium is related to the initial speed of sound in the gas at the
inlet and the other parameters are related to the corresponding values at the channel inlet.

Figure 3a shows the behavior of the mixture parameters along the channel in the absence of coagulation
and channel expansion, but in the presence of nucleation and phase transitions. It can be seen that the pres-
ence of phase transitions at the interface (on the surface of nuclei) leads to a decrease in the velocity of
the dispersed mixture, an increase in pressure, gas and dispersed phase densities, and the concentration
of clusters. It should be noted that the change in the parameters of the mixture occurs in the initial section
(~0.02 m long) and then, after reaching the saturation state, the parameters of the disperse system do not
change.

1.4

0.6 0.6 1
0.4 0.4r 1
0.2 0.2t 1
P2 n
0 1 1 1 L O L 1 T T
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
X, m X, m

Figure 3. Behavior of the mixture parameters along the channel: @ — no coagulation and channel expansion;
b — the presence of coagulation of nuclei and expansion of the channel

The influence of the process of nuclei coagulation and the effect of channel expansion is illustrated in
Figure 3b. As an example, the flow of a gas-dispersed mixture in a channel in the form of a paraboloid of

revolution is considered. In this case for the channel cross-sectional area we have S(x)=S/ Sy =1+xx,

where the coefficient k characterizes the degree of expansion (k>0) of the channel cross-section per unit
length (has a dimension of 1/m). For Figure 35 the expansion coefficient is k=0.5. It can be seen that in spite
of the deceleration of the medium along the channel the concentration of nuclei rather strongly decreases
along the channel length due to the presence of coagulation. The pressure and temperature of the medium, as
in the previous case, increase along the channel and the velocity decreases.

Figure 4 shows the change in the radius of clusters due to the processes of coagulation and phase transi-
tions (condensation). Curves / and 2 correspond to different values of the accommodation coefficient
B,=0.001 and 0.01 in the presence of phase transition (condensation) and coagulation processes in a channel
without expansion (k=0), curve 3 shows the change in the radius of nuclei in an expanding channel with an
expansion coefficient (k=0.5) at 8,,=0.001, and curve 4 corresponds to the absence of coagulation. In the ab-
sence of coagulation the nucleus radius changes only due to the phase transition (curve 4). Moreover, first
there is vapor condensation, then there is an insignificant evaporation of drops, so that the direction of the
phase transition changes along the channel. Figure 4 shows that in this case the cluster radius increases by
about 8 times. In the presence of the coagulation process the nucleus radius along the channel increases sig-
nificantly (for example, at a distance of 0.1 m from the channel entrance the nucleus radius increases by
about 40 times). Thus, the coagulation process significantly affects the growth of clusters during the flow of
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a mixture of vapor and nuclei of the condensed phase in the channel. A change in the accommodation coeffi-
cient has a rather noticeable effect on the growth of nuclei in the carrier medium, mainly in the initial section
of the channel (curves / and 2).

]|

Figure 4. Changing the radius of clusters (the curves are explained in the text).

Conclusion

On the basis of the constructed model of the flow of a dispersed mixture, which takes into account the
presence of nucleation, coagulation, and phase transitions, the calculations of the flow of a vapor-droplet
mixture in channels of constant and variable cross sections have been carried out. The basic properties of the
behavior of the parameters of the mixture along the channel are established. In particular, it was found that
the pressure and temperature of the medium increase along the channel, while the velocity decreases. More-
over, the process of cluster coagulation leads to a significant increase in the particle size. Particular solutions
of the coagulation equation in the presence of sources and sinks of monodisperse clusters are considered sep-
arately.

The results obtained can be useful in various areas of modern technology: in the design of various heat
and power and heat exchange plants, to study the process of the outflow of various mixtures from containers,
to simulate the processes of formation and growth of nuclei (in particular, nanoclusters) in saturated media,
etc.
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T.P. Aman6aes, T'.E. Tineyos, A. 3ynapoexoBa

Hyxkieanusi, koaryJasuus sKoHe (pa3ajibIK e3repicrep sKaraaibIHIarbl
AHUCIIEPCTi OPTATAPAbIH KO3FAJIBICHIH MATEMATUKAJIBIK KeCKiHIeY

Hyxkneanust, koarymsiuust skoHe (asanblk aybpicynap OONFaH Ke3[e ra3JuclepcTi OpTaHbIH KO3FaJIbIC MOJEI
Kypbutansl. Knacrepiepnid maiiga ©6ony mOpoLeciH cumarray YUIIH TOMOTSHAI HyKJIeauus MOJewi
KonmanbUIabl. KitacteprepiH Koarymsiiust Mmpoleci ojapiablH OpOYHABIK KO3FalbICHIHBIH ece0iHeH Kypeni
Jen caHananbl. MOHOIUCIEPCTI KIacTepyiepliH HAKThl JKarAalblHAa KOAryJBilus TEHJICYIHIH IIeNIiMiH
OemeKkTepiH maiina OOMy Ke3i MEH ONapiblH JKOFaly YAEpICTepiHIH KaTBICYBIMEH Tajjay >KacaiFaH.
@aszanblk  aybICyJdapAblH OKbULIAMABIFBIH  aHblkray yuriH  Depu-Kuyacen-Jlenrmioop — dopmynacst
naiiananpurad. Ecenteynep tene-TeHik merinae ((hazanapapH KbULIAMABIKTAPbl MCH TeMIIepaTypaiapbl
Ccolikec KeNreH Ke3/[e) KBa3HeIeMi MOJENb Heri3iHzae Kypriziimi. 3epTrey HOTIDKECiHIe KaHalgarbl eKi
(aszanpl Kocma arblHBIHBIH HYyKJIEalHs, KoaryJsius jkoHe (asanmblK TypliieHysep OoiiFaH Ke3aeri Herisri
KacuerTepi aHblKTalAbl. by TemmepaTypachl KaHan OOWBIMEH 6CiN, KaHbIFy TeMIepaTypachlHa KaHall
KipebepiciHeH 6ipa3 KalIbIKTHIKTa JKeTeTIHAIr KkopceTiireH. Ecenteynep kepceTkeH e, Koarysius Iporeci
KaHas OOMBIMEH KJIacTep OJILeMACPiHiH TapalbIMbIHA KATThI 3Cep eTe/i.

Kinm co30ep: nucriepcTi Kocma, HyKiIeanust, Koarysamus, (pa3anslk TYpiIeHy, OpOYH/BIK KO3FaIbIC.

T.P. Aman6aes, I'.E. Tuneyos, A. 3ymap6exoBa

MaremaTu4eckoe MO/1eJIMPOBAHME TEYEeHNH TMCIIEPCHBIX Cpe/l MPH
HAJIMYUM HYKJIeAlMU, KoaryJsiuun u ¢a3oBbIX nepexo10B

Iloctpoena mMozenb IBUKEHHS T'a30AUCIEPCHON Cpelbl IPU HAJIMYUM IPOLIECCOB HYKJICALUU, KOAryJsILud U
(a30oBBIX IepexonoB. [ onmcaHUs Iponecca 3apoAbIIeo0pa3oBaHus UCIOIb30BaHA MOJIETb TOMOTCHHOM
Hykieanuu. CauTaeTcs, 9TO IPOIECcC KOAryJIsIUU KJIAaCTePOB MPOUCXOAUT 33 CUET UX OPOYHOBCKOTO JIBIKE-
Hus. IlpoBefieH aHanM3 peLICHUs ypaBHEHMs KOAryJlUU B YAaCTHOM CIy4ae MOHOJUCIEPCHBIX KJIACTEPOB
IpH HAIMYMM MCTOYHMKA M CTOKA 4acTl. J[nsi ompeneneHus ckopocTH (a3oBbIX HNEpPEexXonoB NPHMEHEHa
¢dopmyia ['epua-Kuyncena-JIenrmiopa. Pacdyers! mpoBeieHbI Ha OCHOBE KBa3HOIHOMEPHOM MO B PaMKax
PABHOBECHOTO MPUOIMKEHHs (KOTa CKOPOCTH U TeMreparypsl ¢a3 coBnanaior). B pesynbrare uccienosa-
HMS YCTaHOBJICHBI OCHOBHBIE CBOMCTBA TEYEHHMS IBYX(Aa3HOH CMECH B KaHaJle IIPH HAIMYMHU HYKJICALUH, KOa-
rymsud ¥ Ga3oBbIX IpeBpameHuii. [TokazaHo, 4To TeMmepaTypa napa yBelInduBaeTcs BJOJIb KaHala U J0C-
TUTaeT TEeMIEPaTyphbl HACHILEHUS HAa HEKOTOPOM pacCTOSHUM OT BXOJa B KaHal. Pacueramu noka3zaHo, 4TO
NpoLECC KOAryJIUU JOCTaTOYHO CHIIBHO BIHMSET Ha paclpeiesIeHUe Pa3MEpOB KIIACTEPOB BJOJIb KaHaa.

Knouesvie cnosa: JAUCIIEpCHAasA CMEChb, HYKJICAlUs, KOaryysius, (1)33OBLIC Nepexoanl, 6pOyHOBCKOC JBUXKEC-
HHUC.
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