КОНДЕНСАЦИЯЛАНҒАН КҮЙДІҢ ФИЗИКАСЫ ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

УДК 531.02

А.Е.Альжанова, А.К.Даулетбекова

Евразийский национальный университет им. Л.Н.Гумилева, Астана (E-mail: aliya.alzhan@yandex.kz)

Трековое формирование в структурах SiO₂/Si и Si₃N₄/Si

В рамках модели термического пика рассчитаны параметры трекообразования для структур SiO₂/Si и Si₃N₄/Si при облучении быстрыми ионами. Авторами подчеркнуто, что важным и новым результатом является оценка возможности использования рассчитанных ионов для создания нанопористых слоев в диоксиде кремния и нитриде кремния. Методом химического травления были получены наноразмерные поры в структурах SiO₂/Si. Исследована морфология поверхности образцов SiO₂/Si и параметры сформированных нанопор. Таким образом, отработана методика вытравливания ионных треков методом химического травления.

Ключевые слова: модель, термический пик, трекообразование, структура, формирование.

Облучение быстрыми тяжелыми ионами позволяет управлять свойствами тонких пленок и наночастиц, вкрапленных в твердую матрицу. Треки, образовавшиеся в результате облучения быстрыми тяжелыми ионами, после обработки в некоторых травящих композициях могут быть преобразованы в систему наноканалов [1–3]. Этот подход используется для изготовления трековых мембран на основе полимерных пленок, используемых в качестве фильтров тонкой очистки в органическом синтезе, биотехнологиях, медицине.

Процесс вытравливания треков носит пороговый характер. Важно выбрать режим облучения, который позволил бы гарантированно получать вытравленный трек на месте падения каждого иона. В качестве критерия «травимости» треков обычно используют величину электронных потерь энергии иона на входе в мишень $(dE/dx)_{e thr}$. В случае SiO₂ пороговое значение $(dE/dx)_{e thr}$, по разным данным, колеблется от 4 до 1,5 кэВ·нм⁻¹ [1, 4–6]. Однако для гарантированного получения слоев с высокой плотностью и малым диаметром каналов, кроме $(dE/dx)_{e thr}$, важно располагать информацией о других параметрах трекообразования, например, о диаметре трековой области, формирующейся при прохождении иона в аморфном SiO₂. Для описания прохождения быстрых ионов в SiO₂ и некоторых других диэлектриках хорошие результаты дает модель термического пика [7].

Расчет проводился в рамках модели термического пика с использованием программного комплекса, созданного в лаборатории элионики Института прикладных физических проблем им. А.Н.Севченко БГУ. Модель предполагает термализацию электронной подсистемы твердого тела за время, не превышающее 10^{-14} с. В следующие несколько пикосекунд электрон-фононное взаимодействие приводит к быстрому нагреву области вдоль траектории быстрого иона. Процесс переноса энергии от электронной к атомной подсистеме твердого тела описывается системой из двух дифференциальных уравнений. Для расчета тепловых полей используют макроскопические свойства материала мишени. Модель включает один свободный параметр — средний пробег электрона при электрон-фононном взаимодействии λ . Если плотность энергии, выделенной в электронных возбуждениях, достаточно высока, происходит расплавление материала и формирование цилиндрической области диаметром в несколько нанометров — будущего трека. В последующие несколько десятков пикосекунд расплав охлаждается до температуры окружающей матрицы. Теплофизические параметры SiO₂ для расчета взяты из [7], параметр λ принят равным 4 нм. В таблице 1 представлены результаты моделирования трекообразования (радиус и время жизни) расплавленной области, образующейся в SiO₂ при прохождении ионов (¹⁹F 28 MэB; ³²S 47 MэB; ³⁵Cl 43 MэB, ⁴⁰Ar 38, 54 MэB).

Таблица 1

Данные по темпе	ратурным полям дј	ля структуры SiO ₂

Ион	Энергия иона	Мах радиус области, нагретой	Время существования
	(IVI3D)	до температуры плавления (нм)	(IIC)
Ar	38	2,6	3,6
Ar	54	2,4	3,0
Cl	43	2,1	2,6
S	47	1,6	1,4

В таблице 2 приведены данные по температурным полям, рассчитаным для Si_3N_4 , облученного ионами ⁵⁶Fe 56 MэB, ⁸⁴Kr 84 MэB, ¹⁸⁰W 180 MэB.

Таблица 2

Данные по температурным полям для структуры Si₃N₄

Ион	Энергия иона (МэВ)	Max радиус области, нагретой до температуры плавления (нм)	Время существования (пс)
Fe	56	1,7	0,5
Kr	84	3,0	1,3
W	180	5,3	4,7

Таким образом, в рамках модели термического пика рассчитаны параметры трекообразования (радиус и время существования расплавленной области) для прохождения (¹⁹F 28 MэB; ³²S 47 MэB; ³⁵Cl 43 MэB, ⁴⁰Ar 38, 54 MэB) в SiO₂. По результатам расчетов скрытые треки в случае облучения ионами ¹⁹F 28 MэB не образуются, поскольку материал в трековой области не нагревается до температуры плавления. Для остальных ионов достигается плавление трековых областей, причем максимальный радиус расплавленной области, 2,2 нм, достигается при прохождении ионов Ar с энергией 38 МэB, минимальный радиус расплавленной области, 1,6 нм, достигается при облучении ионами S с энергией 47 МэB. При облучении нитрида кремния ионами Fe (56 МэB) рассчитанные радиус и время существования области, нагретой до температуры плавления, составляют 1,7 нм и 0,5 пс соответственно. При облучении ионами Kr (84 МэB) эти значения равны 3,0 нм и 1,3 пс. В случае W (180 МэB) радиус нагретой до температуры плавления области равен 5,3 нм, а время ее существования составляет 4,7 пс. Выполненные исследования позволяют выбрать нужные ионы для создания треков, с учетом возможностей ускорителя DC-60, для создания нанопористых материалов на основе структур SiO₂/Si и Si₃N₄/Si методом вытравливания треков.

Структуры SiO₂/Si, изготовленные термическим оксидированием кремниевой подложки КДБ 12 диаметром 100 мм с кристаллографической ориентацией (111) в атмосфере влажного кислорода при 900 °C, облучались нормально к поверхности ионами Xe с энергией 133 МэВ, флюэнсом 1×10^9 см⁻² и с энергией 200 МэВ, с флюэнсами 2×10^8 см⁻², 2×10^9 см⁻², 2×10^{10} см⁻², 2×10^{11} см⁻²; ионами Ar с энергией 38 МэВ, с флюэнсами 1×10^9 см⁻², 1×10^{10} см⁻², 1×10^{11} см⁻²; ионами Kr с энергией 59 МэВ, с флюэнсами 1×10^9 см⁻², 2×10^{10} см⁻², 1×10^{11} см⁻²; ионами Kr с энергией 59 МэВ, с флюэнсами 2×10^8 см⁻², 2×10^{10} см⁻², 2×10^{11} см⁻². Затем для вытравливания ионных треков было использовано химическое травление образцов SiO₂/Si в 4 %-ном водном растворе фтористоводородной кислоты (HF) при комнатной температуре в интервале времени от 2,5 до 15 минут для образцов, облученных ионами Xe (133 МэВ), и 6 минут — для остальных образцов.

На рисунках 1–3 показаны поверхности структур SiO₂/Si, полученные посредством изучения морфологии на сканирующем электронном микроскопе JSM-7500F (Япония) после травления.

В ходе исследований морфологии поверхности стало ясно, что с ростом времени травления увеличивается диаметр вытравленных пор (рис. 4), плотность же пор существенно не изменяется, и ее значение порядка значения флюэнса. Это подтверждают диаграммы зависимости плотности вытравленных пор от величины флюэнса, построенные для ионов Xe и Kr, приведенные на рисунках 5, 6.

А.Е.Альжанова, А.К.Даулетбекова

Рисунок 1. Поверхность образца SiO₂, облученного Xe (133 МэВ, 1×10^9 см⁻²), после обработки в 4 % HF в течение 2,5 мин

Рисунок 2. Поверхность образца SiO_2 , облученного Xe (200 MэB, 2×10^8 см⁻²), после обработки в 4 % HF в течение 6 мин

Рисунок 3. Поверхность образца SiO₂, облученного Kr (59 MэB, 2×10^9 cm⁻²), после обработки в 4 % HF в течение 6 мин

Рисунок 4. Зависимость диаметра пор от времени травления для образца SiO₂, облученного Xe (133 MэB, 1×10⁹ см⁻²), после обработки в 4 % HF

Вестник Карагандинского университета

Рисунок 7. Поперечное сечение образца SiO_2 , облученного Xe (133 MэB, 1×10^9 cm⁻²), после обработки в 4 % HF в течение 10 мин

Был получен поперечный снимок образца SiO₂, сделанный посредством сканирующей электронной микроскопии (рис. 7). Как видно из рисунка 7, поры имеют правильную коническую форму. Коническая форма пор обусловлена сопоставимыми по величине скоростями травления материала в области трека V_t и в объеме неповрежденной матрицы V_b . Зная длительность травления t_e , глубину поры z и половинный угол конуса поры β , из соотношений $z = (V_t - V_b)t_e$ и sin $\beta = V_b/V_t$ можно рассчитать V_t и V_b [8]. Усредненные по результатам девяти измерений V_t и V_b составляют 72 нм·мин⁻¹ и 24 нм·мин⁻¹ соответственно.

Таким образом, изучена морфология вытравленных треков в слоях аморфного SiO₂ на Si. Показано, что использование доз $\leq 10^9$ см⁻² позволяет создавать систему каналов практически одинакового размера и правильной формы. Обработка облученных образцов в растоворах на основе HF приводит к формированию каналов в виде конусов. Построенные диаграммы зависимости плотности вытравленных пор от времени травления и диаграмма зависимости диаметра вытравленных пор от времени травления и диаграмма зависимости диаметра вытравленных пор от времени травления и диаграмма зависимости диаметра вытравленных пор от времени травления и диаграмма зависимости диаметра вытравленных пор от времени травления пость пор соответствует значению флюэнса, а диаметр пор увеличивается с увеличением времени травления.

Список литературы

1 Dallanora A., Marcondes D.A., Bermudez T.L., Fichtner G.G., Trautmann C., Toulemonde M., Papaleo R.M. Ion tracks in systems // Journal Appl. Phys. Physics series. — 2008. — No. 3(45). — P. 104–106.

2 Bergamini, Bianconi M., Cristiani S., Gallerani L., Nubile A., Petrini S., Sugliani S. Tracks formation in silicon structure // Journal Nucl. Instr. Meth. Phys. Series B. — 2008. — № 5(22). — P. 266–269.

3 Vlasukova L.A., Komarov F.F., Yuvchenko V.N., Mil'chanin O.V., Didyk A.Yu., Skuratov V.A., Kislitsyn S.B. Threshold of track formation // Bulletin of the Russian Academy of Sciences. Physics series. — 2012. — № 1(38). — P. 76–78.

4 *Marcondes D.A., Bermudez T.L.* Nuclear Tracks in Solids // Journal of Ed. R.L.Fleischer. Berkeley Univ. California Press. — 1975. — № 2(32). — P. 23–27;

5 Sigrist A., Balzer R. Etching tracks in silicon dioxide // Journal Helv. Phys. Acta. Series B. — 1977. — № 5(23). — P. 75–78.

6 Jensen, Skupinski M., Razpet A., Possnert G. Ion irradiation in amorphous silicon dioxide // Journal Nucl. Instr. and Meth. Phys. Series B. — 2000. — № 5(12). — P. 903–906;

7 Toulemonde M., Dufour C., Meftah A., Paumier E. Transient. Thermal processes in heavy ion irradiation of crystalline inorganic insulators // Journal Nucl. Instr. and Meth. Phys. Series B. — 2000. — № 5(12). — P. 906–909;

8 Spohr R. Ion tracks and micro technology: principles and applications // Journal Wisbaden: Viweg Verlag. Physics series. — 1990. — N_{2} 1. — P. 272–276.

А.Е.Әлжанова, А.Қ.Даулетбекова

SiO₂/Si және Si₃N₄/Si құрылымдардағы трек қалыптасуы

Термиялық шоқының қалыбының шегінде, SiO₂/Si және Si₃N₄/Si құрылымдары үшін трек қалыптасуы параметрлерін жылдам иондармен сәулелендіру кезінде өлшенді. Авторлар есептелген иондарды қолдану мүмкіндігін бағалауда нанокеуек қабаттарды SiO₂/Si және Si₃N₄/Si құрастыру үшін өте маңызды және жаңа нәтижеге қолжетімді екендігін айтады. Химиялық күйдірмелеуі әдісімен SiO₂/Si құрылымдарда нанокөлемді тесіктер алынды. Зерттеу SiO₂/Si құрылымдарының бетінің морфологиясының және нанокөлемі тесіктердің парметрлері арқылы жүзеге асты, және химиялық күйдірмелеуі әдісімен алынған иондық трек күйдірмелеуі әдістемесі ұсынылды.

A.Ye.Alzhanova, A.K.Dauletbekova

Track formation in SiO₂/Si and Si₃N₄/Si structures

In frame of thermal spike model, calculated the parameters of track formation were developed for the agencies of the SiO_2/Si and Si_3N_4/Si irradiated by fast ions. An important and a new result is the estimation of possibility of using the calculated ions to create a nanoporous layers in silicon dioxide and silicon nitride. The method of chemical etching were obtained nanosized pores in the structures of the SiO_2/Si . We investigated the surface morphology of samples SiO_2/Si and parameters formed nanopores. Thus, the tested technique of etching ion tracks by the method of chemical etching.