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Research of annealing influence on the hardness
of detonation coatings from zirconium dioxide

The article studied the effect of annealing on the structure and properties of zirconium dioxide coatings ob-
tained by detonation spraying. Detonation spraying was realized on a computerized detonation spraying com-
plex of the new generation CCDS2000. Thermal annealing of coated samples was performed at temperatures
0f 900 °C, 1000 °C, and 1100 °C. It was determined that the microhardness of zirconium dioxide coatings in-
creases by 10-25 % depending on the annealing temperature after annealing. The results of nanoindentation
showed that the nanohardness of the coatings after annealing at 1000 °C increases by 50 %. It was determined
that after annealing at 1000 °C, the elastic modulus of the coatings increases, which indicates a decrease in
plasticity and an increase in the strength of the coatings.. X-ray diffraction analysis showed that the phase
composition of coatings before and after annealing consists of t-ZrO,. After annealing occurs there is an in-
crease in the degree of t-ZrO, tetragonality. Electron microscopic analysis showed that an increase in the
number and size of micro-continuity in the form of thin layers after annealing. Determined that increase the
hardness of zirconium dioxide after annealing at 900-1100 °C is associated with a higher degree of
tetragonality t-ZrO, phase.

Keywords: zirconium dioxide, coating, detonation spraying, hardness, annealing, microstructure, phase,
indentation.

Introduction

High-speed spraying methods can significantly expand the capabilities of traditional thermal spraying
coatings used to protect parts from wear and corrosion [1—4]. Gas-thermal high-speed methods for producing
coatings include methods of detonation [5], high velocity air-gas plasma (HVAGP) [6] and high velocity oil
flame (HVOF) spraying [7]. Among them, the most promising is detonation spraying. Detonation spraying is
one of the methods of thermal spraying of coatings, which is carried out using a special detonation gun filled
with explosive gas mixture. A powdery spray material is used to form a coating. In the process of detonation,
the particles of the powder are accelerated to high speeds (up to 1000 m/s), their melting and deposition on
the sprayed surface [8].

The detonation method is promising for obtaining heat-resistant and heat-protective coatings on the
blades of gas turbine engines due to the low porosity of the coatings and the saving of the chemical composi-
tion of the initial powder in the coatings, as well as the high adhesion strength of the coatings. Zirconium
dioxide coatings are often used as upper thermal barrier layers of heat-protective coatings [9, 10]. There is
very little work devoted to the study of zirconium dioxide obtained by detonation coatings. At the same time,
detonation coatings allows one to obtain a set of properties necessary for heat-protective coatings: high adhe-
sion of the coating, thickness up to 300 um, significant porosity, as well as the ability to adjust the structure
and properties of the coating by selecting processing parameters. Therefore, the study of structural transfor-
mations in detonation coatings of zirconium dioxide during heat treatments is of great interest. This work is
devoted to studying the impact of thermal annealing on the structure and hardness of zirconium dioxide coat-
ings.

Materials and methods of research

Detonation coatings were obtained on a computerized complex of new generation detonation spraying
CCDS2000 (Computer Controlled Detonation Spraying), [11-14]. A general view and a schematic diagram
of the detonation spraying process are presented in figure 1. The channel inside the gun barrel is filled with

gases using a high-precision gas distribution system, which is controlled by a computer. The process begins
with filling the channel with carrier gas. After that, a certain portion of the explosive mixture is supplied in
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such a way that a layered gas medium is formed, consisting of an explosive charge and a carrier gas. Using a
carrier gas stream, the powder is injected into the barrel (using a computer-controlled feeder) and forms a
cloud. The substrate is placed at a certain distance from the exit from the trunk. After part of the powder is
injected, the computer gives a signal to initiate detonation. This is realized using an electric spark. The dura-
tion of explosive combustion of a charge is about 1 ms. a detonation wave is formed in the explosive mix-
ture, which in the carrier gas transforms into a shock wave. Detonation products (heated to 3500—4500 K)
and carrier gas (heated by a shock wave to 1000—1500 k) move at a supersonic speed. The interaction time of
gases with the sprayed particles is 2—5 ms. Particle velocities can reach 800 m s-1 [15—18].
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Figure 1. Computerized detonation complex CCDS200 (a) and its circuit diagram (b)

Sainless steel 12Cr18Nil0T was chosen as a substrate. The samples were sandblasted before coating. A
powder of zirconium dioxide stabilized with yttrium oxide was used to obtain coatings. The particle size of
the powder was up to 25-30 um. Thermal annealing of the coated samples was carried out in a laboratory
tube resistance furnace SUOL-0.4.4/12-M2-U4.2 in a vacuum of 10— Pa at temperatures of 900 °C, 1000 °C,
and 1100 °C during 1 h. The temperature was measured and controlled by a VRT-2 precision
thermoregulator using two thermocouples of the CCI 1378 type. The microstructure of the coatings was stud-
ied by metallographic analysis using a Neophot-21 microscope and scanning electron microscopy using
JSM-6390LV and PhenomProX scanning electron microscopes. The microhardness of the samples was
measured by the indentation method of a diamond indenter on a PMT-3 device in accordance with GOST
9450-76, at a load of 200 g and exposure under a load of 10 s. The phase composition of the samples was
studied by X-ray diffraction analysis on an X’PertPro diffractometer using CuKa radiation. The measure-
ment of hardness and elastic modulus was determined by the indentation method on a «NanoScan — 4D
compact» nanohardness meter in accordance with GOST R 8.748-2011 and ISO 14577 indentation with a
load of 0.1 N.

Research results and Discussion

The figure 2 presents the microstructure of the coatings before and after annealing. The thickness of the
coatings was 360—370 um. The coating has a porous structure. The average pore size is 5 pm.

100
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Figure 2. Microstructure of coatings from zirconium dioxide before (a)
and after annealing at 900 °C (b), 1000 °C (c) and 1100 °C (d)

Figure 3 shows SEM-images of coatings and the results of X-ray microanalysis. The coating has a clas-
sic structure characteristic of gas thermal spraying methods. The coating is characterized by the presence of
high density and uniformity as well as the presence of individual pores. Two groups of pores can be distin-
guished: rounded micro-discontinuities several micrometers in size and micro-discontinuities in the form of
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thin interlayers, the size of which is several tens of micrometers in length and 0.3—1.0 ym in thickness. Thin
layers are formed as a result of the spreading of molten particles of the sprayed metal over the surface. The
results of X-ray microspectral analysis show that the formed coating is characterized by a more uniform dis-
tribution of all the chemical elements that make up the composition.

Figure 3. SEM-image of the surface (a), cross-section (b) of coatings
of zirconium dioxide and the results of micro X-ray spectral analysis (c)

Figure 4 shows the dependences of the microhardness variation along the depth of the experiment sam-
ple before and after annealing at different temperatures. The maximum increase in microhardness is observed
in samples after annealing at 1000 °C. The maximum depth of the hardened layer for all coatings is 400 um,

i.e. corresponds to the thickness of the coating.
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Figure 4. Microhardness of coatings from zirconium dioxide

The region of thermal influence and the diffusion zone are not observed according to metallographic
analysis and microhardness. This is due to the fact that during detonation sputtering the substrate heats up to
only 200-300 °C, that the surface of the substrate does not undergo structural and phase transformations, and
also during annealing the diffusion processes do not occur between the zirconium dioxide coating and the

iron-based substrate at the indicated temperatures.

We also studied the nanohardness of coatings by the nanoindentation method. Figure 5 presents the
comparative nanoindentation curves for coatings before and after annealing. It is seen that the penetration
depth of the nanoindenter into the coatings is 10 % less than the initial coating after annealing.
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Figure 5. Nanoindentation curves of coatings from zirconium dioxide before (a) and after annealing under 900 °C (b)

The modules of elasticity and nanohardness of the coatings were determined on the results of
nanoindentation (table 1). The results showed that the nanosolidity increases in comparison with the sample
before and after annealing. In this case, the highest value of the nanohardness of 15.8 GPa is observed after
annealing at 1000 °C. It can be seen that after annealing at 1000 °C, the elastic modulus of the coatings in-
creases, which indicates a decrease in plasticity and an increase in the strength of the coatings.

Table 1
Results of nanoindentation

Coatings Hanohardness, GPa Young's modulus, GPa
ZrO, initial 9,9 176
ZrQ, after annealing at 900°C 11,6 178
ZrO, after annealing at 1000°C 15,8 245
ZrO, after annealing at 1100°C 12,8 174

We can note a clear discrepancy (1.5 times) in the quantitative values of the results with good qualita-
tive agreement by comparing the results of determining the hardness of the material at different loads on the
indenter (microhardometry (figure 4) and nanosolidometry (table 1)). This can be explained by the fact that
during nanocontact interaction, due to the small (tens of nanometers) dimensions of the indent, the degree of
imperfection of the material under the indent is significantly reduced, which helps to bring the behavior of
real material closer to ideal [19].

Figure 6 shows the diffraction patterns of the coatings before and after annealing. The results of x-ray
structural analysis of coatings showed that the coating in the initial and after annealing consists of the t-ZrO,
phase. The diffractogram of samples after annealing differs from the diffractogram before annealing in that
instead of single lines (211) and (222), the t-ZrO, phase gives double lines. Also, after annealing the pairs of
closely spaced each other lines (002) — (110) and (004) — (103), the t-ZrO, phases are moved wider apart.
All this is related an increase in the tetragonality of the t-ZrO, phase. So as known [20] that the distance be-
tween paired lines depends on the c/a ratio. The larger it is, i.e., the greater the degree of tetragonality, the
paired lines are further apart each other. In turn, the degree of tetragonality depends linearly on the oxygen
content of zirconium dioxide. In our case, an increase in the degree of tetragonality after annealing due to an
increase in the oxygen content is quite possible, since the annealing of the samples was carried out in a low
vacuum.

Based on x-ray diffraction analysis, it can be claimed that the increase in the hardness of zirconium di-
oxide after annealing is associated with an increase in the tetrogonality of the t-ZrO, phase. Since the greater
the degrees of tetragonality of the tetragonal phase, the higher the strength of the material [21].
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Figure 6. X-ray diffraction patterns of coatings from zirconium dioxide before (a)
and after annealing at 900 °C (b), 1000 °C (c) and 1100 °C (d)

It can be seen on figure 7 that thermal extraction at 1000 °C based on structural influence is not provid-
ed. However, an increase in the number and size of micro continuities in the form of thin layers is observed.
This helps to reduce internal stresses associated with operation. The formation of micro continuities in the
form of thin interlayers is the reason for the strong discrepancy in the data on the microhardness and

nanosolidness of the coating.
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Figure 7. SEM-images of coatings from zirconium dioxide after annealing at 1000 °C
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Conclusions

1. The coatings of zirconium dioxide with a thickness of 360-370 um were obtained by the detonation
method. It was determined that the coatings have pores and the average pore size is 5 um by metallographic
analysis method.

2. Electronic microscopic analysis showed that the resulting coatings are characterized by the presence
of high density and uniformity, as well as the presence of individual pores. Two groups of pores have been
identified: round micro-discontinuities several micrometers in size and micro-discontinuities in the form of
thin interlayers, the size of which is several tens of micrometers in length and 0.3—1.0 um in thickness. There
is an increase in the number and size of micro-continuity in the form of thin layers after annealing.

3. X-ray diffraction analysis showed that the phase composition of coatings before and after annealing
consists of t-ZrO,. After annealing, there is an increase in the degree of t-ZrO, tetragonality.

4. Tt was determined that the microhardness of zirconium dioxide coatings increases by 10-25 % de-
pending on the annealing temperature after annealing. The results of nanoindentation showed that the
nanohardness of the coatings after annealing at 1000 °C increases on 50 % and reached to 15.8 GPa.

5. Determined that increase the hardness of zirconium dioxide after annealing at 900—1100 °C is asso-
ciated with a higher degree of tetragonality t-ZrO, phase.

This research is funded by the Science Committee of the Ministry of Education and Science of the Re-
public of Kazakhstan (Grant No. BR05236748).
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b.K. Paxamgunos, JI.H. Kokimkanos, H. Kanraii, I1. KoBanesckuii, P.C. KoxkaHoBa

Hupxounii nuokcuai Herizinae 1eTOHAUMSIIBIK
JKAOBIHIAPABIH KATTbUIBIFbIHA KYHIIPYIiH 3CepiH 3epTTey

Makanaga HAETOHAIMSUIBIK TO3AaHAATy OJICIMEH aJBIHFAH MBIPBII JWUOKCHIl HETi3iHAe JKacanraH
JKaOBIHAAPIBIH KYPBUIBIMEI MEH KacHeTTepiHe KYHIIpymiH acepi 3epTrenreH. J[eToHauusuIbIK TO3aH aHABIPY
CCDS2000 »axa OybIHIbI JeTOHAVSIIBIK TO3aHIAaHABIPY KOMITBIOTEPIICHI€H KEIICHIH/IE JKY3€eTe achIphUIFaH.
Kanramacer Gap ynrinepai tepmusiiblk Kyitmipy 900°C, 1000°C sxone 1100°C TtemmepartypanapbsiHaa
KYpri3iireH. MBbIpbIll JUOKCHAIHEH JKacalfaH »MKaObIHAAPIbIH MUKPOKATTHUIBIFbI KYHAIPreHHEH KeHiH
KYHipy TeMneparypacbina OainanbicTsl 10-25 Y%-Fa apraTbiHbl aHbIKTa1bl. HaHOMHIEHTIpICY HOTIKENEP],
1000°C ke3inzme KyimipyneH KeHiHri sxaObIHAApABIH HAaHOKATTBUIBIFBI 50 %-Fa apTaThIHBIH KOPCETKEH.
1000°C xe3inge KyHmipreHHeH KeHiH >kaOBIHIApABIH CEpHIMIUIIK MOXYJI YIFasasl, Oy >kaOBIHIapIbIH
HUITIIITITIHIH a3ai0bl MEH OEpIKTITiHIH apTybl aHBIKTAIFaH. MBIPHIIT JHOKCUIIHEH KYHIipyre ACHiHTI jkoHE
OJaH KEHiHrl »aObIH >KOFaphl THIFBI3ABIKICH JKOHE OIPTEKTLNriMeH, KeyeKTi OOJybIMeH CHIIaTTalFaH.
PeHTreHKYpBUIBIMABIK, Talfay HOTWOKENepi, KyiimipreHre IeHiH >koHe OJaH KeHiH >KaObIHHBIH (a3aybik
Kypamsbl t-ZrO,-IeH TYpaThIHBIH KepceTkeH. KyHmipreHHeH keifiH TerparoHanpaik t-ZrO, neHreiiHiy ecyi
GaiikanraH. DICKTPOHIbI-MHKPOCKONMSUIBIK TalJay HOTHKeNlepi KyimipreHHeH KeiliH jkyka Kabarrtap
TYpiHZErT MUKPOTAJIIBIKTBIH MOJILIEPI MCH CaHbI YiIFaiiFaHblH KepceTTi. Mpipbim anokcuainig 900-1100°C
Ke3iH/[e KyHIipreHHeH KeiliH KaTThUIBIFBIHBIH KOFapbutaysbl t-Z10,-(ha3achlHbIH TETPOrOHANBAIK I3PEKECIHIH
JKOFapbUIaybIMEH OalIaHbICThI €KeHI aHbIKTAJIFaH.

Kinm ce30epi: MBIPBIII TUOKCHUI, >Ka0bIH, JCTOHAIMSIIBIK TO3aHIATY, KATThUIBIK, KYHIIPY, MUKPOKYPBLIBIM,
(haza, naEHTHPICY.

b.K. Paxamgunos, JI.H. KakumxanoB, H. Kanraii, I1. KoBanesckuii, P.C. Koxanora

HccaenoBanue BJOMSIHUS OTKHATA HA TBEPAOCTH
ACTOHAIIMOHHBIX HOKprTHﬁ U3 TUOKCHIAA HUPKOHUS

B cTathe n3ydeHo BIMSHHE OT)KUTa Ha CTPYKTYPY M CBOMCTBA MOKPBITHI U3 AUOKCHIA LIUPKOHHS, MOTyUYEH-
HBIX ~ METOJOM  JETOHAI[MOHHOTO  HambUIeHHs.  JIeTOHAIMOHHOE  HAMbUIEHHE  OCYILECTBISIN
Ha KOMIBIOTEPU3UPOBAHHOM KOMILUIEKCE I€TOHAMOHHOro HambuieHus: HoBoro nokosienus CCDS 2000. Tepmu-
YECKUH OTXKHUT 00pa3LOB ¢ MOKPHITUEM MPOBOIWIM mpu Temieparypax 900, 1000 u 1100°C. Onpexneneno, uyto
rnocjie OTKUIa MUKPOTBEPAOCTh IOKPBITUM M3 JUOKCHIA LMPKOHUS yBeiauuuBaerca Ha 10-25%
B 3aBUCHMOCTH OT TEMIIEpaTypsl OTXKHra. Pe3yibTaTel HAHOMHICHTHPOBAHUS TT0Ka3aId, YTO HAHOTBEPHOCTh
nokpeiTHii nocne orxkura npu 1000°C nossimaerca Ha 50 %. Onpeneneno, uro nocne omxura mpu 1000°C
MOZYJb YIPYTOCTH HMOKPBHITUH yBEIMYMBACTCS, YTO yKa3bIBAcT HAa YMEHBIICHHE IUIACTHIHOCTH U MOBBIMICHHE
TIPOYHOCTH NOKPHITHH. [ToKpEITHE M3 THOKCHIa IUPKOHHS 10 M MIOCIIe OTXKHUTa XapaKTepU3yeTcsl HATMIHEM BBI-
COKOH INIOTHOCTH ¥ OJHOPOJHOCTH TIOP. DIIEKTPOHHO-MUKPOCKOITMYECKUH aHaIM3 MTOKAa3all, 9TO HOCIE OTXKH-
ra MPOMCXOJHUT yBEINUEHNE KOJIMYECTBA U Pa3MEPOB MUKPOCIUIOMIHOCTU B BUJE TOHKHX Mpocioek. Pentre-
HOCTPYKTYPHBII aHAIU3 TOKa3al, 4To (a30Bblil COCTaB MOKPBHITHH 10 M MOCIE OTXKHUra cocTouT u3 t-ZrO,.
ITocne orxura HabIIOgAETCS YBENNUEHNE CTENEHN TeTparoHaabHOCTH t-ZrO,. OnpesneneHo, 4To MOBBIIEHUE
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TBEPIOCTH AMOKCHAA LUPKOHUS nocie omkura npu 900—1100°C cBs3aHO ¢ yBEIHUEHHEM CTEIIEHU TETparo-
HaJbHOCTH t-ZrO,-hassl.

Kniouesvie cnosa: nNOKCU] IUPKOHUS, MOKPHITHE, JETOHALIMOHHOE HAMBUICHUE, TBEPAOCTh, OTHKHI, MHKPO-
CTPYKTYypa, a3a, HHICHTHPOBAHHE.
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