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Features of the structure and properties formation of AMG6 alloy  
under the equal channel angular pressing 

The results of experimental studies of changes in the structure, microhardness, and wear resistance of the 
AMG6 aluminum alloy during equal channel angular pressing (ECAP) are presented in this work. The evolu-
tion of the fine structure and the formation of secondary phases in the AMG6 alloy during ECAP were stud-
ied. The dark-field image of the structure of the AMg6 alloy in the matrix reflex showed the splitting of the 
material into small disoriented fragments of about 0.5 μm in size with a small-angle disorientation boundary 
(about 2–5°). Optimal method and modes of ECAP of the AMG6 aluminum alloy were selected of the bases 
of experimental research, which make it possible to obtain a workpiece with enhanced tribological and me-
chanical characteristics. It was established that the most intensive grinding of the grain structure in the AMG6 
alloy occurs at ECAP-12 at a channel angle intersection of 120°. It is shown that with a decrease in grain size, 
the microhardness of the alloy AMG6 after ECAP increases by 4 times, compared with the initial state.The re-
sults of the test samples for abrasive wear showed a decrease in mass loss after 12 passes of ECAP, which indi-
cates an increase in the wear resistance of the alloy AMG6 by 13–14 %, compared with the initial state. 

Keywords: equal channel angular pressing, the aluminum alloy, dislocation structure, micro hardness, wear re-
sistance. 

 

Introduction 

Improving the strength which will reduce the mass of products from structural materials, is an urgent 
task from the point of view of the promising use of aluminum alloys [1, 2]. In addition, insufficient strength 
significantly narrows their scope in products operating under high mechanical loads, for example: overhead 
power lines, cables and tires [3]. In this regard, the search for ways to increase the complex of physico-
mechanical properties of aluminum alloys is an important scientific problem. One of the promising ap-
proaches that improve the properties of aluminum alloys is the grinding of their grain structure to ultrafine-
grained (UFG) state, by such promising methods of intensive plastic deformation (IPD) as IPD torsion 
(IPDT), equal channel angular pressing (ECAP), also its modification — ECAP in parallel channels (ECAP-
PC) [4–7]. The ECAP method has several advantages over other IPD methods, which are associated with the 
implementation of a simple shear scheme in the process of plastic deformation [8]. Theoretically, such a 
scheme makes it possible to accumulate large and uniform deformations during a processing cycle with min-
imal energy consumption, without changing the cross section of the workpieces. In connection with the fore-
going, the aim of this work is to study the influence of the modes of equal channel angular pressing on the 
structure of AMG6 alloy. 

Materials and methods of research 

In accordance with the tasks, the aluminum alloy AMG6 widely used in modern aviation, rocket sci-
ence, shipbuilding and construction was chosen as the object of study. Table 1 presents the chemical compo-
sition of the aluminum alloy of AMG6. 

T a b l e  1  

The chemical composition of AMG6 alloy (GOST 4784–97) 

Model Fe Si Mn Ti Al Cu Be Mg Zn 
AMG6 till 0.4 till 0.4 0.5–0.8 0.02–0.1 91.1–93.68 till 0.1 0.0002–0.005 5.8–6.8 till 0.2 
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2. It was established that the most intensive grinding of the grain structure in the AMG6 alloy occurs at 
ECAP-12 at a channel angle intersection of 1200 the grain of the starting material is ground to sizes of  
~1.0–1.5 μm after ECAP-12 in the AMG6 alloy. 

3. It was established that under ECAP with a channel intersection angle of 120°, at which the number of 
processing cycles reached 12 at e = 8.4, it became possible to obtain defect-free workpieces with a more uni-
form structure. 

4. It is shown that the microhardness of the AMG6 alloy increases with a decrease in grain size. It has 
been determined that the microhardness of the AMG6 alloy increases by almost 4 times as a result of equal-
channel angular pressing, compared with the initial state. 

5. It is shown that the weight loss decreases to 5.4–5.6 mg after ECAP-12, which shows an increase in 
the wear resistance of AMG6 aluminum alloy by 13–14 %. 

6. It was determined that the dislocation structure of the AMG6 alloy changes after ECAP: dislocation 
networks are formed, and practically no dislocations are observed inside the fragments. The size of the frag-
ments is about 0.5 µm. Dark-field analysis showed that most of the boundaries of disorientation are small-
angle. 

We can conclude that the developed ECAP modes can be effectively applied to a wide range of alumi-
num alloys. Thus, the studies showed the promise and feasibility of using ECAP to increase the hardness and 
wear resistance of aluminum alloys. 
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Теңканалды бұрыштық престеу кезіндегі АМГ6 қорытпасының  
құрылысы мен қасиетінің түзілу ерекшеліктері 

Жұмыста теңканалды бұрыштық престеу (ТКБП) кезіндегі АМГ6 алюминий қорытпасының тозуға 
төзімділігі мен микроқаттылығы құрылымының өзгеруін зерттеудің эксперименталды нəтижелері 
келтірілген. ТКБП кезіндегі АМГ6 қорытпасының екінші фазасының түзілуі мен жұқа қабатының 
эволюциясы қарастырылған. Матрицалық рефлекстегі АМГ6 қорытпасы құрылымының қараңғы 
бейнесі материалдың кіші бұрышында (шамамен 2–5°) өлшемі 0,5 мкм жуық ұсақ фрагменттерге 
бөлінуін көрсетті. Эксперименталды зерттеу нəтижесінде ТКБП кезіндегі АМГ6 оптималды əдісі мен 
режимі таңдалды, осы таңдау арқылы механикалық жəне трибологиялық сипаттамасы жоғары 
болатын алюминий қорытпасы алынды. ТКБП кезіндегі АМГ6 қорытпасындағы түйіршіктік 
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құрылымның ұсақталуы 120º болғанда жəне каналдардың бұрышының қиылысуы кезінде болатыны 
анықталған. Түйіршіктер мөлшерінің азаюымен АМГ6 қорытпасының микро қаттылығы ТКБП кейін 
бастапқы жағдаймен салыстырғанда 4 есе артады. Абразивті тозуға үлгілерді сынау нəтижелері (ТКБП) 
12 рет өткеннен кейін массаның жоғалуының төмендегенін көрсетті, бұл бастапқы жағдаймен 
салыстырғанда АМГ6 қорытпасының тозуға төзімділігінің 13–14 % артуын көрсетті. 

Кілт сөздер: теңканалды бұрыштық престеу, алюминий қорытпасы, дислокациялық құрылым, 
микроқаттылық, тозуға төзімділік. 
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Особенности формирования структуры и свойств сплава АМГ6  
при равноканальном угловом прессовании 

В статье приведены результаты экспериментальных исследований изменений структуры, микротвер-
дости и износостойкости алюминиевого сплава АМГ6 при равноканальном угловом прессовании 
(РКУП). Изучены эволюция тонкой структуры и формирование вторичных фаз в сплаве АМГ6 при 
РКУП методом просвечивающей электронной микроскопии. Темнопольное изображение структуры 
сплава АМГ6 в матричном рефлексе показало разбиение материала на мелкие разориентированные 
фрагменты размером около 0,5 мкм с малоугловой границей разориентации (около 2–5°). На основе 
экспериментальных исследований выбран оптимальный режим РКУП алюминиевого сплава АМГ6, 
который позволяет получить заготовку с повышенными трибологическими и механическими характе-
ристиками. Установлено, что наиболее интенсивное измельчение зеренной структуры в сплаве АМГ6 
происходит при 12 проходах РКУП с углом пересечения каналов 120°. Показано, что с уменьшением 
размеров зерен микротвердость сплава АМГ6 после РКУП увеличивается в 4 раза, по сравнению с ис-
ходным состоянием. Результаты испытания образцов на абразивное изнашивание показали снижение 
потери массы после 12 проходов РКУП, что указывает на увеличение износостойкости сплава АМГ6 на 
13–14 %, по сравнению с исходным состоянием. 

Ключевые слова: равноканальное угловое прессование, алюминиевый сплав, дислокационная структу-
ра, микротвердость, износостойкость. 
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