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Q-soliton solution for two-dimensional q-Toda lattice

The Toda lattice is a non-linear evolution equation describing an infinite system of masses on a line that
interacts through an exponential force. The paper analyzes the construction of soliton solution for the q-Toda
lattice in the two-dimensional case. For this purpose, the equation of motion is taken and the transformation
of the dependent variable is used to convert the nonlinear equation into a bilinear form, which is written as
the Hirota polynomial. As one of the most effective methods for constructing multisoliton solutions of
integrable nonlinear evolution equations, Hirota method is applicable to a wide class of equations, including
nonlinear differential, nonlinear differential-difference equations. Using the Hirota method, the bilinear form
was obtained for the two-dimensional q-Toda lattice on the basis of which the g-soliton solution was found.
The dynamics of the g-soliton solution for two-dimensional g-Toda lattice is presented. Note that the soliton
is conserved due to the equilibrium between the action of the nonlinear environment with dispersion. In
addition, the soliton behaves like a particle: does not collapse when interacting with each other or other
disturbances, while maintaining the structure and continues to move. This quality has the ability to use when
transferring data or information over long distances with virtually no interference. In addition, the study of
the Toda lattice and the application to it of different methods in different dimensions allows one to proceed to
the understanding of such complex terms as matrix models that can be used to describe different physical
systems.
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Introduction

Waves described by different nonlinear differential equations, which consist of special pulses, have the
property of preserving their original shape like stable particles. They are called solitary waves, single wave
particles or solitons. Nonlinear lattices or lattices also contain solitons. When the energy is not very large,
nonlinear lattices behave periodically, so stable pulses propagate in such nonlinear continuous systems.
The fact of the existence of such lattices shows that there must be some non-linear lattice that allows strict
periodic waves, and certain impulses will be stable. One such example is the Toda lattice equation. The Toda
lattice is a non-linear evolution equation describing an infinite system of masses on a line that interacts
through an exponential force. The Toda lattice is considered as a simple model of the nonlinear one-
dimensional crystal in solid state physics. It is defined by a lattice of particles with the interaction of the
nearest neighbor, described by the equations of motion [1].

To find the exact solutions for nonlinear differential equations, a huge number of methods are used,
such as the Backlund transform [2], the Hirota method [3], the inverse scattering transform method [4], and
others. One of the most effective methods for constructing soliton solutions of integrable nonlinear evolution
equations is the direct Hirota method, which can be found in [3]. This method is applicable to a wide class of
equations, including nonlinear differential, nonlinear differential-difference equations [5-7]. The initial step
in this method is to use the transformation of the dependent variable to convert nonlinear partial differential
equation into a quadratic form, the so-called bilinear form. The main idea of the method is to write the bilin-
ear form as a Hirota polynomial - D. This compact form is called Hirota’s bilinear form. It should be noted
that nonlinear partial differential or differential-difference equations can have not only Hirota bilinear forms
but also trilinear or multilinear forms [8]. It is assumed that all fully integrable nonlinear partial differential
equations or difference equations can be written in Hirota bilinear form. On another hand, for an equation
that admits Hirota’s bilinear form, the existence of N-soliton solutions of any order is not guaranteed.
The equations admitting Hirota’s bilinear form and having N-soliton solutions are called integrable by
Hirota [9].

In this paper, we present a two-dimensional g-Toda lattice. A one-dimensional case for this
equation was studied in [10]. Using the Hirota bilinear method, we find the bilinear form for the two-
dimensional g-Toda lattice. Dispersion relation and the g-soliton solution are obtained by bilinear form for
the two-dimensional g-Toda lattice.
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Two-dimensional g-Toda lattice

In the beginning, classical mechanics was studied specifically for one-dimensional lattices, where the
particles forming them interact only with their nearest neighbors. If we restrict their consideration to homo-
geneous systems, then the mass of each particle is denoted by m, the displacement of the n —th particle y,,
and the interaction potential between neighboring particles is @ (¥ (n+1) — ¥»)- Then the equation of motion
takes the following form

d’ , ,
mTZu(p(y(m)—yn)—(p(yn—y(n_l))(n:...,—1,0,1,2...), )
where ¢ derivative ¢. Thus,
, do(r
7(r)=-9(r) =22, @
r

f(r) is a force which the spring acts, stretched by the value of ;,

Th = Yn41 — Yn OT Th = VYn— Yn- (3)
(3) — this is a relative displacement. When the force f(r) is proportional to the displacement r, Hooke's law
is satisfied. The Toda equation [10], describing the motion of the anharmonic lattice, has the form

dZYn

28 = afebm — e~b], 4)

where a, b and m are real constants. Introducing the force of the n —th particle into the lattice, we obtain the
following equation

Vn — a[ebrn _ e—an]’ (5)
as a rapidly decreasing function, equation (4) turns out to be
2
S+ V) = Viny + Vonony = 2V (6)
The two-dimensional g-Toda lattice has the following form
2
#ln(l +V(,y,t) =AV(x,y,t) =V(x,qy,t) +V (x,%, t) — 2V (x,y,t). (7

Present the transformation of the dependent variable as

V(x,y,t) = In(f(x,y,0). ®)

dxdt

Substituting (8) into (7) and integrating the obtained expression twice, we get

frefife _ TOar0r(xe)

= ~1. )

f2 r?

Equation (9) can be rewritten in the Hirota bilinear form, namely in terms of the Hirota D-operator, as
[DxD; = (™7 + &Py = 2)[{f(x,y,0) - f(x,,0)} = 0, (10)
which follows from (9) by multiplying by 2f2(x,y,t), where we use the g-exponential identity [10]. For
functions f(y), g(y) the g-exponential unit [10] will be
e (9O) = f(@9)g () = Ef OIET 90, ¥ €R. (1)

The last equation is satisfied if we have the usual relation between two quantum parameters it and g for
q = e™. To find the soliton solutions of the Toda lattice, we apply the expansion of perturbations around the
formal perturbation parameter ¢ in the form

fay,) =1+efPx,y, ) + 2 fPx,y,6) + - (12)
Substituting (12) into (10) we obtain the equation

PDY{f(x,y,8) f(x,y,0)} = P(D)[{1 - 1} + {1+ fO + V- 1}
+£2{1 .f(Z) + f(Z) -1 +f(1) 'f(l)} + 83{1 . f(3) +f(3) 14+ f(l) .f(Z) + f(Z) .f(l)}
+£4‘{1 .f(4) + f(4) 14 f(l) .f(3) + f(3) .f(l) + f(Z) .f(Z)} + ], (13)
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where P(D) = DD, — (e"Py + e"™Py — 2). We collect the coefficients with respect to gl Vi > 0 of equa-
tion (13). The coefficient of the first term £° disappears trivially, and from the coefficient £ we have

PD)1-fD + fD .1} = 2P(9) = 2[0,0, — (e™Py + &Py — 2)|f® = 0. (14)

The equation (14) is a direct result of the property of the Hirota operator D [9] because P(D) has an even
order. The next important step in the calculation is to find solution for equation (14).

The general trend for soliton solutions is exponential, but the exponential function f® does not satisfy
equation (14). Due to the nature of the g-numbers, the solution to equation (14) should have a power function
for the analog of the g-discrete spatial variable. Therefore, you can choose the original solution (14) as

fPCy,t) = yrefrrren, (15)

where, a, 8,1 — arbitrary constants.
A solution with the usual behavior of soliton and having power analogs for g-discrete variables is called
a g-soliton solution. If we substitute (15) in (14), we obtain the relation between the parameters

By =q"+q % -2, (16)

which is called the dispersion relation.
The coefficient £2 obtained from (13) gives the following

P(D){l .f(Z) + f(Z) 14+ f(l) .f(l)} — ZP(a)f(z) + P(D){f(l) .f(l)}_

That gives
[DxD; — (e™Py + ey — 2)|{f D (x,y,8) - FD(x,y,8)}
= —2[0,0, — (™% + e — 2)|f D (x,y,1). (17)

Since f@ given in (14) satisfies to form (17), we can assume that all members of higher order are ze-
ro, i.e. fU) = 0,j = 2. Further, as a generalization, this fact can be assumed in the derivation of the i-q-soliton
solution, fU) =0 for all j > i+ 1. When ¢ = 1, one-g-soliton solution is constructed by substituting equa-
tions (15) and (16) into (17) and taking into account that f(x,y,t) = 1 + fV(x,y,t) then

yaﬁyeﬂt+yx+n

2
VY, 6) = - Inf(x,y,1) = (18)

(1+yae,8t+yx+n)2’

which is the one-g-soliton solution of the two-dimensional q-Toda lattice. The dynamics of the one-g-soliton
solution is presented in Figure.

a) b) ©)

Figure. Dynamics of a one-g-soliton solution for the two-dimensional
g-Toda lattice with parameters: y=2, a=-5, n=0, g=1.25, (a) t=-5, (b) t=0, (c) t=5.

Figure shows the dynamics of the obtained solution (18) depending on t. So with different values of ¢,
the wave’s shape is saved. This proves there is a soliton in a two-dimensional g-Toda lattice, which means
that energy transfer is possible. The Toda lattice is unique because it has a wide range from the harmonic to
the anharmonic limit and has the so-called N-soliton solutions. As presented above, soliton is a structurally
unchanged solitary wave in a nonlinear environment. When interacting with each other or other disturbances,
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solitons behave like particles, therefore they are called particle-like. Due to the balance between the action of
nonlinearity and dispersion, they save their structure, not collapsing in a collision.

Conclusion

Thus, we present the gq-Toda lattice in the two-dimensional case. Using the Hirota bilinear method, we
find the bilinear form for the two-dimensional g-Toda lattice and obtain the dispersion relation and the one-
g-soliton solution. This algorithm can be applied to obtain N-soliton solutions. The soliton is conserved due
to the equilibrium between the action of a nonlinear environment with dispersion. In addition, the soliton
behaves as a particle (particle-like): it does not collapse when interacting with each other or other disturb-
ances while maintaining the structure and continues to move. This quality has the ability to use when trans-
ferring data or information over long distances with virtually no interference. The study of the Toda lattice in
various dimensions allows one to go on to understand such complex terms as matrix models that can be used
to describe different physical systems.

The article is performed as part of the financial support of the scientific and technical program
(F. 0811, No. 0118RK00935) of the MES of the Republic of Kazakhstan.
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b.b. Kyrym, I'.H. [llaitxoBa

Exienmmemai q-Toaa Ti30eriHin q-cOJMTOHABIK MIeIiMi

Topna Tiz6eri SKCIIOHEHIMAIABIK KYII apKbUIBI ©3apa 9peKeTTEeCETiH, CHI3BIKTAFhI MIEKCi3 Maccaap skyheciH
CHUITATTaUTBIH CBHI3BIKTBl €MEC SBOJIONMSIIBIK TEHICY Oonbim TabbuTagpl. ABTopnap (-Toma Ti30eriHiH
eKienmemM/i KEHICTIKTeri CONMTOHIBIK LICHIIMIH KYpacThIpyAbl Taigaasl. MakcaTka KOJDKETKi3y YIIiH
KO3FAJIBIC TEHJEYl aJbIHbIN, XHUPOTa IIOJMHOMBI PETiHAE Ka3bUIFAH OUCHI3BIKTBI TYpPre KeNTipy YIUiH
CBI3BIKTBI €MEC TEHIEYAi TAyei alHbIMAJbIHBI TYPJACHIIPY KOJAaHbl. VIHTerpaniaHaThiH ChI3BIKTBI €MecC
IBOJIIOLMSUIBIK, TEHACYIIEPAiH KOl COJMTOHIBI IIeNiMICPIH KypacThIpyIblH THIMAI 9aicTepiniy 6ipi perinae
OepiireH omicTi KemTereH TeHIEyJepre, OJNIApABbIH INIiHAE CHI3BIKTHI eMec Au(QepeHnnan, ChI3BIKTE eMec
1 hepeHman-albIPEIMIBIK TEHACYNICpTe KoJInaHyFa 6onaabel. XUpoTa dICiH KOIJaHa OTBIPHII, eKiemmeM i
q-Toma Ti30eriHiH OWCBI3BIKTBI TYpi AaJbIHBII, OHBIH HETi3IHAE (-COJMMTOHJBIK IIENTiMi eCcenTemi.
Exiemmemni q-Toma Ti30€riHIH (-CONMTOHABIK MICNIIMHIH JWHAMHKACHI YCHIHBUIIBL ATam aiiTKaHxaa,
COJIMTOH CBI3BIKTBI €MEC OpTa MEH AMCHEPCHs apachlHJIarbl OPEKETiHiH TeHe-TeHAIr apKachlHIa caKTalabl.
CoHBIMEH Katap COJHMTOH ©3iH OeulleKk peTiHae ycraiapl: O6ip-OipiMeH Hemece Oacka aybITKyJapMeH e3apa
opekeTTecy Ke3iHAe KHpamail, KYpbUIBIMBIH CaKTall, KO3FAJIBICHIH JKaJFacThIpaabl. OCbIHZaH KacHeTTi
MOJIMETTi HeMece aKmapaTThl albICKa JepIliK KeAepricia xkibepy Ke3iHae KoJgaHyFa MYMKIHIIK TyFbI3abl.
Bynan Gacka, Toma Ti30eriH »oHe OFaH TYpII OJIIEMAITIKTETi OPTYPIi SMiCTepIiH KONIAHYBIH 3epTTey
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OpKenKi (U3MKANBIK JKYHenepAi Cumarray MakcaThlHAQ KOJaHyFa GOJIAThIH, MAaTPHULANIBIK MOICIbICD
CHSKTBI KYpZAENi TEPMUHAEPl TYCIHYre MyMKIiHIIK TYFbI3a/IbL.

Kinm ce30ep: nucnepcus, coauton, Tosa Ti30eri, OUChI3BIKTE hopma, XupoTa SAici.

b.b. Kyrym, I'.H. [llaitxoBa

Q-coiuTOHHOE penIeHue IByMepPHOi menoyku q-Toabl

Llerouxa Tozpl sABIsAETCS HEAMHEHHBIM BOJIOLHOHHBIM YPABHEHHEM, OIUCBHIBAIOLINM OECKOHEUHYIO CHCTE-
My Macc Ha JIMHHH, KOTOPBIE B3aHMOJIEHCTBYIOT Yepe3 SKCIOHEHINAIbHYIO CHly. B paboTe nmpoBenen ananmms
MIOCTPOCHUS COJMTOHHOIO PELICHUS LEeno4ku -Toxasl B ABYMEpPHOM IpocTpaHcTBe. s 3TOH 1enu B3STO
ypaBHCHHUE JBIDKCHUS U HCIIOIB30BaHO IpeoOpa3oBaHue 3aBUCHMON MEPEMEHHOM 11 peoOpa3oBaHus He-
JMHEWHOTO ypaBHEHHMs B OMIMHEHHYIO (hopMy, KOTOpas 3allficaHa Kak MOJMHOM omnepatopa XupoTsl. Kak
oMH n3 Hanbosee 3G HEKTUBHBIX METOJOB OCTPOCHUSI MHOTOCOJIUTOHHBIX PEILICHHI HHTEIPUPYEMbIX HEJU-
HENHBIX BOJIIOLIMOHHBIX YPAaBHEHUH, TaHHBI METOJA NPUMEHUM K LIMPOKOMY KJIACCy YpaBHEHUH, BKIIOUas
HenuHelHble auddepeHnnanpable, HenuHelHble AnddepeHnnanbHO-Pa3HOCTHBIE ypaBHEHUS. [IpuMenss Me-
Toj XUpOThl, ObLTa MONTy4YeHa OWIUHEHHas GopMma Uil ABYMEpHOM Ienodku q-Toasl Ha OCHOBE, KOTOPOW
HallleHo q-coiuToHHOE peuieHue. [IpeacTaBineHa AUHAMUKA (-COJIMTOHHOIO PELICHUS JABYMEPHOM LENOYKU
g-Toxsl. OTMETHM, YTO COJIMTOH COXpaHSCTCs OJarofapsi paBHOBECHIO MEXIY AeHCTBHEM HENMHEHHOH cpe-
16! ¢ pucniepcueil. [TomuMo 3TOTr0 coMMTOH BeneT ce0sl Kak 4acTUIla: He pa3pyIIacTcs IPH B3aUMOACHCTBAN
JIpyr ¢ APYroM WIU APYTMMH BO3MYILEHUSAMHU, IIPU 3TOM COXPAaHAET CTPYKTYpY U IPOJOJDKACT JBUXKCHHUE.
Takoe kKa4ecTBO UMEET BO3MOKHOCTh MCHOJIb30BAHMS IIPH IIEpefaye JaHHbIX WIM MHPOPMALUK Ha JajbHHE
paccrosHus npakTHdecku 6e3 momex. Kpome Toro, uccnenopanue enodku Tozsl u NpUMeHEHHE K HEH pas-
HBIX METOJIOB B PAa3JIMYHBIX PA3MEPHOCTSX MO3BOJISET MEPEUTH K NMOHHUMAHUIO TAaKUX CIIOXKHBIX TEPMHHOB,
KaK MaTpU4HbIE MOJENH, KOTOPbIE MOXKHO MPUMEHUTH IS OIMCAHUS Pa3HBIX (PU3UUECKUX CUCTEM.

Knioueswvie crosa: nucnepcus, COMUTOH, Tierouka To/pl, OnnrHeiHas popma, MeTo] XUPOTHI.
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