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Recurrent relations for correlation functions 

We have considered the basic problem of the mathematical description of the viscous motion of a metallic 
melt, accompanied by the overcoming of internal friction caused by the motion of the melt particles and the 
overcoming of the forces of their interaction. The novelty of the research is that the correlation functions of 
viscosity are justified from the point of view of the quantum-statistical method. The correlation between cor-
relation functions and the radial distribution functions is established. Based on the cluster theory of melt flow, 
a relationship is established between the viscosity and the interatomic potential. The relationships found allow 
us to determine the mean values of any physical parameters, and also to represent the potential energy of the 
system as a sum of the energies of the pair interaction of the particles. Two-particle radial distribution func-
tions are sufficient to determine the average values of physical parameters, in particular, the transfer coeffi-
cients of molten metals. Three or more orders of correlation functions can be taken into account by recurrence 
formulas. 

Keywords: metal melt, the hydrodynamic equations, correlation functions, quantum potentials, the quantum-
statistical, mathematical modeling, computer simulation, density functional. 

 

The theory of the liquid state is not a simple section of the modern theory of metallurgical processes. 
If the structure of solids is studied at a sufficient level and as a result of studying their properties, a rich ex-
perimental material is obtained, and this material is analyzed from the point of view of quantum physics and 
chemistry, this can not be said about liquids and liquid metal systems in general. Despite these problems, 
research in this field is continuously expanding due to the development of liquid state physics, physical 
chemistry and the theory of metallurgical processes.  

In this case, hydrodynamic studies of melts, taking into account the micro- and nanostructure of the 
molten systems, are of particular importance. The accumulated knowledge in these areas as a whole makes it 
possible to solve many problems associated with the theory of the molten state and, obviously, have a posi-
tive effect on the progress of liquid state physics, the theory of metallurgical processes and, of course, metal-
lurgical technologies. These studies are of great importance, since to this day has not yet been developed not 
only the general theory of solid and liquid states, but also of gaseous and plasma states [1]. 

Scientific novelty of the work соnsists in developing more perfect models for studying molten systems 
cluster structure, as well as in making an algorithm of computing geometry, potential energy of interaction 
and atoms radial distribution function in them. 

Aim of work – to analyze and investigate the possibilities of using a semi-empirical quantum-chemical 
method for construction of atoms radial distribution in melts. To develop an algorithm of numerical model-
ing by a method of molecular dynamics of structural and physical- and- chemical properties of melts. 

For specific calculations, a detailed physico-mathematical apparatus is needed. We will use the methods 
of statistical physics. It should be noted that the greatest successes have been achieved in this direction in the 
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works of M. Born, G. Green, J. Kirkwood, N.N. Bogolyubov and others. And the main task of such a statisti-
cal theory of liquids is to establish a relationship between the properties of molecules and the interatomic 
potential, as well as between the thermodynamic and kinetic properties of molten systems. When studying 
the properties of the melt, it is necessary to take into account the set of particles for which the averaging of 
the physical quantities is performed. As is known [2], in the case of a crystal it is possible to obtain, for ex-
ample, information pertaining to a single dislocation, but one can not track the motion of one impurity atom. 
And in melts, due to the high mobility of its particles and due to the absence of long-range order (as in a 
crystal lattice), the closest environments of different atoms or molecules can differ quite strongly, both in the 
number of neighbors and in their spatial arrangement. Since it is not possible to follow the behavior of a sin-
gle atom or group of atoms, the so-called clusters, the results of measurements of any melt properties turn 
out to be averaged over a large number of atoms. When a property is studied which does not depend on the 
angular orientation (in space) of the nearest neighbors of a given atom, then, when averaging over different 
atoms, such an orientation can not be reflected as a result of the measurement, so that only the total number 
of atoms located at a certain distance from of the given atom. 

To describe this situation, we choose a spherical layer with an internal radius r  and an outer R  layer 
centered on the nucleus of an arbitrary particle of a simple melt (containing for simplicity only the atoms of 
one element). In this case, the average number of atoms in this spherical layer will be proportional to the 

volume of the layer drr 24  and is determined by the following relationship: 

   24dn r r drR r  , (1) 
where  R r  is the so-called pair function of the radial distribution. 

The function  R r  in terms of its physical meaning is the density of the number of particles, but not the 

average, but local with respect to some arbitrary atom chosen as the origin. In the case when the distance r  
is sufficiently large in comparison with the interatomic distance ar ,  individual atoms may not experience the 
action of the central particle and, therefore, will be located independently of it. In this case, we must substi-
tute in equation (1) instead  R r  of the usual average density   0.R r R   In the case when the distance 

from the center of a given atom is too small (less than the so-called atomic diameter), then no nucleus of the 
particle will fall into the spherical layer. The function  R r  has an oscillating character at small distances r . 

It is this behavior that corresponds to the structure of the melt, since some ordering features inherent in the 
crystal from which the melt was formed should appear in them. Thus, there must exist a pre-important dis-
tance between nearest neighbors, analogous to the interatomic distance in the crystal, the average number of 
nearest neighbors, analogous to the coordination number in the lattice, and so on. The existence of ordering 
elements in the melt, which is ultimately due to the intrinsic volume of the molecules and the features of the 
interatomic potential, is determined by the term short-range order. 

If we were to consider an ideal gas, then instead of an oscillating curve, the radial distribution function 

 R r  would be constant and equal to the average density 0R , since the particles of an ideal gas do not inter-

act and have zero intrinsic volume. For example, the radial distribution function for liquid tin is shown in 
Figure. 

Note that in addition to the function  R r  itself, the value is often considered: 

   24 .
dn r

r R r
dr

   

A parabola is a graph 2
04 R r  to which it asymptotically tends 

dn

dr
  at large distances r . Vertical lines 

describe the case of a crystal when the distances between atoms are fixed, and the height of the line is pro-
portional to the number of neighbors in the corresponding coordination sphere. These results can be repre-
sented (table 1) in such a way that when the crystal melts, the peaks are blurred, forming the oscillating func-

tion 
dn

dr
 depicted in Figure.  

The causes of oscillations at small distances can be treated as the most probable arrangement of atoms 
in melts with increasing r . 
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Earlier, we defined a pair function of the radial distribution  R r  that describes the average location of 

the melt particles around some arbitrary atom. Now, this need to be generalized to the case when we are in-
terested in the relative positions of the number of atoms. To do this, we choose a volume dV   in the melt. 
Let the average number of particles in this atom be equal to 0 ,dn R dV where 0R  is the number density of 
particles (the number of particles per unit volume). If we assume that dV  it is sufficiently small, it  dn  will 
be much less than unity. Because of this, the product  0R dV  can be considered as the probability of detecting 

a melt particle in a volume dV : 1 0 1.dW R dV   
 

24 r R  

 

Figure. The curve of the atomic distribution for tin 

T a b l e  

Curve of the atomic distribution for tin 

r  2.1 2.3 2.5 3 3.5 4 4 5 5.3 5.5 6 6.5 7 7.5 8

Rr 24  0.3 0 0.5 5 9.8 6 5.8 11.5 12.7 13 18 20.1 18.8 21 28 
 
Let us select in the melt the following volume elements 1dV  and  2dV  near points with radius vectors 

1 2, .r r  Let us determine the probability that in volumes 1dV  and  2dV  simultaneously there will be two parti-
cles. Then this probability should be proportional to the volumes themselves, that is: 

 12 2 1 2 1 2, ,dW R r r dV dV      (2) 

where  2 1 2,R r r   the function is the so-called binary correlation function. 

If we assume that the volumes 1dV  and  2dV  are far from each other, then the probabilities of particles en-
tering these volumes become independent and, by the theorem on multiplication of probabilities, we can write: 

2
12 1 2 0 1 2.dW dW dW R dV dV   

It can be seen from the relations (2) that for large values of 1 2r r  it follows that   2
2 1 2 0, .R r r R , simi-

larly to what was said above, we can introduce the probability 1,2,...,ndW that there will be one particle in the 

volumes 1 2, ,..., ndV dV dV . Define  1,2,...,ndW  it as follows: 

 1,2,..., 1 2 1 2, ,..., ...n n n ndW R r r r dV dV dV .    (3) 

The function of the coordinates of all n   particles nR  introduced by Eq. (3) is called the correlation 
function of the n  order. As before, as the distance between each two volumes increases, the probabilities of 
finding particles in each volume become independent, that is, when it is obvious i kr r  that It is necessary 

1 0.R R  To emphasize that a particular case of a correlation function of the n  order is the so-called ternary 

correlation function  3 1 2 3, , .R r r r  
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In addition, we can establish a connection between the binary correlation function and the pair function 

 R r  of the radial distribution. The probability of finding two particles in volumes 1dV  and  2dV  can be rep-

resented as a product of two probabilities: first, that there is one particle 1dW  in the volume 1dV and, secondly, 

that the second particle 2dW  is at a distance  1 2r r  from the first particle. Thus, 2dW  this is the probability 

of the second event, provided that the first has already occurred: 

 2 2 1 2.dW R r r dV   

The probabilities dW  can be normalized as follows: 

1 0 1 0 ,
V

dW R dV R V N     

where N  is the total number of melt particles. 

   2 2 1 2 1 2, 1 ,dW R r r dV dV N N     

and correspondingly: 

 
!

.
!n

N
dW

N n



 

In practice, for convenience of calculations, it is expedient to reformulate the correlation functions and 
probabilities so that the former become dimensionless and that the norm integrals are equal to unity. To this 
end, we introduce new probabilities for a given configuration of n-particles of the melt: 

 1 2 1 2

1
, ,..., ... ,n n n nn

dW F r r r dV dV dV
V

     (4) 

where ,i i i idV dx dy dz       , ,i i ix y z    are the coordinates of that particle. 
Naturally, the correlation function defined in this way is dimensionless. Further, it will be possible to 

require that the new probability be normalized to unity 1,ndW  , that is, 

 1 2 1 2

1
, ,..., ... 1.n nn n

F r r r dV dV dV
V

     (5) 

From equations (4) and (5) it is clear that: 
 

 
!

.
!n n

N
d dW

N n
 


 

The last equation suggests a reliable interpretation of probabilities nd . Probability  ndW  refers to a 

given volume configuration, when it is not essential which particles occupy these volumes 1 2, ,..., ndV dV dV . 

The volume 1dV  refers to any of the N particles, and the volume 2dV  refers to any of the remaining particles 

1N  , and so on. In view of this, an additional multiplier appears 
 

!
.

!

N

N n
  Taking into account relations 

(3) and (5), we find the correlation between the correlation functions nR  and nF : 
 

     1 2 1 2

! 1
, ,..., , ,..., .

!n n n nn

N
R r r r F r r r

N n V



    (6) 

We note that the correlation functions of the two successive orders are related to each other by the rela-
tion (6), which follows from the definition of probability [3]. We now introduce the total potential energy of 
the system, which depends on the coordinates of all the melt particles. Because of this, according to Boltz-

mann-Gibbs statistics, the probability of this particle configuration is proportional to the factor exp
U

kT
   

. 

Then: 

 1 2
1 2

, ,...,
exp ... .n

n n

U r r r
dW A dV dV dV

kT

 
  

 
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Thus, the correlation function NF  can be determined from the potential energy of the system. Then we 

can construct recurrence relations for which allow us to find correlation functions NF  of lower orders: 

   1 2
1 2

, ,...,
, ,..., exp .N n

N n

U r r r
F r r r V A

kT

 
  

 
 

The calculation of these integrals at the present time can be easily carried out so far only for gases in 
which the particle density is small. A direct determination of the correlation functions of the melt with the 
help of statistical mechanics is quite difficult to perform. In such cases, one resorts to numerical methods, 
such as the Monte Carlo method, using the capabilities of computer technology. Suppose that we are inter-
ested in the mean value of some extensive physical property of the melt  1 2, ,..., ,n nM r r r determined by the 

mutual arrangement of a group of n-particles. In different areas of the melt, the configurations will differ 
from each other, so that the property values nM  will oscillate around this mean. Since the probability of the 

arrangement of particles in the configuration ndW  is described by the correlation function  1 2, ,..., ,n nF r r r  

the averaging of the quantity is performed by integrating nM  with the weight nF : 

     1 2 1 2 1 2 1 2

1
, ,..., , ,..., , ,..., ... 1.nn n n n n n n nn

M M r r r dW M r r r F r r r dV dV dV
V

     

In a melt containing N particles, the number of different groups of n-particles is equal 
 

!
.

! !

N

N n n
 

Therefore, the value of the property nM  for the entire volume of the melt will be: 

       1 2 1 2 1 2

1 !
, ,..., , ,..., ... .

! !n n n n n nn

N
M N M r r r F r r r dV dV dV

V N n n


   

Most often, properties are considered that depend either on the coordinate of one particle or on the mu-
tual distances of pairs of particles, that is, properties determined by pair interactions. In the first case: 

     1 1 1 1 11
.

N
M N M r F r dV

V
   

It follows from equation (6) that  1 1

V
F r

N
 ,  1 ,

V
R

N
   0 1,R     therefore: 

   1 1 .
N

M N M r dV
V

   

For a property defined by pair interactions, we can write: 

       2 2 1 2 1 2 1 22 2

1
, , .

2

N N
M N M r r F r r dV dV

V


   

After some transformations we have: 

     0
2 2 1 2 2 1 1 2, .

2

R
M N M r r R r r dV dV   

Denoting 2 1r r  by r , we write: 

      2
2 2

0

2 .M N N M r R r r dr


        (7) 

An important example of the application of equation (7) is the computation of the total energy of the 
melt in the approximation, when the potential energy of the system can be represented as the sum of the en-
ergies of the pair interaction of the particles. If the pair potential is denoted by  U r  and take into account 

that the average kinetic energy of a monatomic particle is equal to 
3

2
kT , then the following relationship 

holds for the total energy: 

    2

0

3
2 .

2
U NkT N U r R r r dr



     
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The results described above show that knowledge of correlation functions 1 2, ,..., nF F F  is necessary for 
the calculation of a number of thermodynamic properties of the melt. It will be shown below that the kinetic 
properties of melts in a number of cases are expressed in terms of integrals containing different correlation 
functions [4-10]. Therefore, it is expedient to set the problem of calculating correlation functions of lower 
orders through known potentials of interatomic interaction  U r .  

This problem was solved by a number of scientists: M. Born, G. Green, J. Kirkwood, N.N. Bogolyubov 
and others. As a result, rather complicated integro-differential equations connecting the functions nF and 1nF   

   1 1 1 1 0 1
V V

F r R r R
N N

   ; 

       
2 2

2 1 2 2 1 2 2 1 22
, , ,

1

V V
F r r R r r R r r

N N N
 


; 

        
3 3

3
3 1 2 3 3 1 2 3 2 1 23

, , , , , ,
1 2

V V
F r r r R r r r R r r r

N N N N
 

 
. 

Now the Bogolyubov-Born-Green equation for the index takes the form: 

         1 2 1 2 2 1 2 1 2 1 1 3 3 1 2 3 3, , , , 0kT R r r R r r U r r U r r R r r r dV        . 

Here we took into account what is the interaction energy of two particles, that is. Dividing this equation 
by a function  2 1 2,R r r , we obtain the equation in the form proposed by M. Born and G. Green: 

       
 

3 1 2 3
1 2 1 2 1 2 1 1 3 3

2 1 2

, ,
,

,

R r r r
kT R r r U r r U r r dV

R r r
        .   (8) 

The equations obtained are rather complicated and a general method for their solution is not yet availa-
ble. Successful results were obtained only for the simplest problems: for a system with low density (i.e., for a 
real gas), for a system of particles interacting according to the Coulomb law and for some other cases. A suf-
ficiently exact solution can be obtained if a function SF  can be expressed in terms of functions nF  with 

smaller numbers  n S . Then it would be possible to «break off» the infinite system of equations (8) and 

find correlation functions, for example, by the method of successive approximations [5, 6]. One of the meth-
ods of approximate integration of the Bogolyubov-Born-Green equations was proposed by J. Kirkwood [7]. 
Taking into account the superposition approximation [7], the Bogolyubov-Born-Green equation (8) takes the 
form: 

        
0

2
ln 1 0

N
kT R r U r R E x xdx d

rV


          . 

The solutions of this Bogolyubov-Born-Green equation for various particular cases were obtained by the 
method of successive approximations with the help of electronic computers. A new method for analyzing equa-
tions for correlation functions was proposed [7]. Without dwelling on it in essence, we note that the Percus-
Yevick method [8] leads to the following integro-differential equation for the radial distribution function:  

         
0

exp / 1 exp 1
U rN

U r kT R r R r U r r dV
V kT

   
              

  
  

which is the basis for calculating the radial distribution function of atoms in the melt. 
The resulting equation describes the state of the melt and can describe its dynamics from a microscopic 

point of view. In this case, the potential energy of the particles depends on pair potentials of the type 

   1 2, ,...,
N

N i k
i k

U r r r U r r


  .
 

Then, using the results of [8], we can write the expressions for the shear viscosity and of bulk viscosity: 
 

0 1 2

4 1
1

15 15sh Bk T I I        
; 

0 1 2 0

3 2 1

5 9 9V Bk T I I k          
, 
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where the integrals 1 2,I I , which depend on the paired potential  U r  and the radial distribution function 

 R r : 

   30
1

0

2
r

B

I R r r U r dr
k T


  ; 

   4 20
2

0

2
r

B

I R r r U r dr
k T


  . 

Then, using known functions  U r ,  R r it is possible to calculate all the necessary values of the shear 

and bulk viscosities that appear in the equations of hydrodynamics. 
Based on the analysis of the existing methods of building potential functions of inter-particle interaction 

in melts be obtained design formulae of atoms radial distribution functions in the system with the aim of 
obtaining basic data for building models of inter-particle interaction.  

The mathematical models and methods developed in the work offer the approach to the solution of a 
fundamental problem of a method of molecular dynamics to the adequate description of potential of inter-
particle interaction used in molten systems. 

Besides, to analyze influence of the mechanism of inter-particle interaction in melts and the system 
properties that gives the chance to penetrate more deeply into the nature of the molten systems and to use this 
data in developing new technologies for metallurgical repartitions. 
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С.Ш. Қажыкенова, С.Н. Шалтақов, Д. Беломестный, Б.Р. Нүсіпбеков 

Корреляциялық функцияларды анықтау үшін рекурренттік қатынастар 

Ішкі үйкелісін басудан туындаған  балқыма бөлшектердің қозғалысы мен  олардың өзара іс-қимылын 
басу күшінің тұтқыр қозғалыс металдық балқыманың математикалық сипаттамасының негізгі 
мəселелері қарастырылған. Зерттеудің жаңалығы корреляциялық функцияның тұтқырлығы кванттық 
статистикалық əдісі тұрғысынан қарастырылғандығында болып табылады. Корреляциялық 
функциялар мен радиалды функцияларды бөлу арасындағы өзара байланыс орнатылды. Сонымен 
қатар балқыма ағымының кластерлік теориясы негізінде тұтқырлық пен атомаралық потенциал 
арасында да байланыс орнатылды. Табылған қатынастар кез келген физикалық параметрлердің 
орташа мəнін анықтауға мүмкіндік берді. Дербес жағдайда ығысу мен көлемдік тұтқырлықты, сондай-
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ақ потенциалдық энергия жүйесі бөлшектердің өзара қозғалыс байланысының жұптық энергиясының 
қосындысы түрінде берілді. Физикалық параметрлердің орташа мəнін анықтау үшін екі бөлшекті 
функцияларды радиалды бөлу жеткілікті. Дербес жағдайда балқытылған металдардың 
коэффициенттерін ауыстыру болып табылады. Үш немесе одан да көп ретті корреляциялық 
функцияларды есептеу рекуррентті формулалары арқылы жүргізілді.  

Кілт сөздер: металдық балқыту, гидродинамика теңдеулері, корреляциялық функциялар, кванттық 
потенциалдар, кванттық-статистикалық, математикалық модельдеу, компьютерлік модельдеу, 
тығыздық функционалы. 

 

С.Ш. Кажикенова, С.Н. Шалтаков, Д. Беломестный, Б.Р. Нусупбеков  

Рекуррентные соотношения для определения корреляционных функций 

Рассмотрена основная проблема математического описания вязкого движения металлического рас-
плава, сопровождающегося преодолением внутреннего трения, обусловленного движением частиц 
расплава и преодолением сил их взаимодействия. Новизна исследований заключается в том, что кор-
реляционные функции вязкости обоснованы с точки зрения квантово-статистического метода. Уста-
новлена взаимосвязь корреляционных функций с функциями радиального распределения. 
На основании кластерной теории течения расплава установлена связь между вязкостью 
и межатомным потенциалом. Найденные соотношения позволяют определить средние значения лю-
бых физических параметров, в частности значения сдвиговой и объемной вязкостей, а также предста-
вить потенциальную энергию системы в виде суммы энергий парного взаимодействия частиц. Двух-
частичные функции радиального распределения достаточны для определения средних значений физи-
ческих параметров, в частности коэффициентов переноса расплавленных металлов. Учет трех и более 
порядков корреляционных функций можно произвести по рекуррентным формулам. 

Ключевые слова: металлический расплав, уравнения гидродинамики, корреляционные функции, кван-
товые потенциалы, квантово-статистический, математическое моделирование, компьютерное модели-
рование, функционал плотности. 
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