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Recurrent relations for correlation functions

We have considered the basic problem of the mathematical description of the viscous motion of a metallic
melt, accompanied by the overcoming of internal friction caused by the motion of the melt particles and the
overcoming of the forces of their interaction. The novelty of the research is that the correlation functions of
viscosity are justified from the point of view of the quantum-statistical method. The correlation between cor-
relation functions and the radial distribution functions is established. Based on the cluster theory of melt flow,
a relationship is established between the viscosity and the interatomic potential. The relationships found allow
us to determine the mean values of any physical parameters, and also to represent the potential energy of the
system as a sum of the energies of the pair interaction of the particles. Two-particle radial distribution func-
tions are sufficient to determine the average values of physical parameters, in particular, the transfer coeffi-
cients of molten metals. Three or more orders of correlation functions can be taken into account by recurrence
formulas.

Keywords: metal melt, the hydrodynamic equations, correlation functions, quantum potentials, the quantum-
statistical, mathematical modeling, computer simulation, density functional.

The theory of the liquid state is not a simple section of the modern theory of metallurgical processes.
If the structure of solids is studied at a sufficient level and as a result of studying their properties, a rich ex-
perimental material is obtained, and this material is analyzed from the point of view of quantum physics and
chemistry, this can not be said about liquids and liquid metal systems in general. Despite these problems,
research in this field is continuously expanding due to the development of liquid state physics, physical
chemistry and the theory of metallurgical processes.

In this case, hydrodynamic studies of melts, taking into account the micro- and nanostructure of the
molten systems, are of particular importance. The accumulated knowledge in these areas as a whole makes it
possible to solve many problems associated with the theory of the molten state and, obviously, have a posi-
tive effect on the progress of liquid state physics, the theory of metallurgical processes and, of course, metal-
lurgical technologies. These studies are of great importance, since to this day has not yet been developed not
only the general theory of solid and liquid states, but also of gaseous and plasma states [1].

Scientific novelty of the work consists in developing more perfect models for studying molten systems
cluster structure, as well as in making an algorithm of computing geometry, potential energy of interaction
and atoms radial distribution function in them.

Aim of work — to analyze and investigate the possibilities of using a semi-empirical quantum-chemical
method for construction of atoms radial distribution in melts. To develop an algorithm of numerical model-
ing by a method of molecular dynamics of structural and physical- and- chemical properties of melts.

For specific calculations, a detailed physico-mathematical apparatus is needed. We will use the methods
of statistical physics. It should be noted that the greatest successes have been achieved in this direction in the
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works of M. Born, G. Green, J. Kirkwood, N.N. Bogolyubov and others. And the main task of such a statisti-
cal theory of liquids is to establish a relationship between the properties of molecules and the interatomic
potential, as well as between the thermodynamic and kinetic properties of molten systems. When studying
the properties of the melt, it is necessary to take into account the set of particles for which the averaging of
the physical quantities is performed. As is known [2], in the case of a crystal it is possible to obtain, for ex-
ample, information pertaining to a single dislocation, but one can not track the motion of one impurity atom.
And in melts, due to the high mobility of its particles and due to the absence of long-range order (as in a
crystal lattice), the closest environments of different atoms or molecules can differ quite strongly, both in the
number of neighbors and in their spatial arrangement. Since it is not possible to follow the behavior of a sin-
gle atom or group of atoms, the so-called clusters, the results of measurements of any melt properties turn
out to be averaged over a large number of atoms. When a property is studied which does not depend on the
angular orientation (in space) of the nearest neighbors of a given atom, then, when averaging over different
atoms, such an orientation can not be reflected as a result of the measurement, so that only the total number
of atoms located at a certain distance from of the given atom.

To describe this situation, we choose a spherical layer with an internal radius » and an outer R layer
centered on the nucleus of an arbitrary particle of a simple melt (containing for simplicity only the atoms of
one element). In this case, the average number of atoms in this spherical layer will be proportional to the

volume of the layer 4z°dr and is determined by the following relationship:
dn(r) =4Tcr2drR(r) 1)

where R (r) is the so-called pair function of the radial distribution.

The function R (r) in terms of its physical meaning is the density of the number of particles, but not the
average, but local with respect to some arbitrary atom chosen as the origin. In the case when the distance r
is sufficiently large in comparison with the interatomic distance 7, , individual atoms may not experience the
action of the central particle and, therefore, will be located independently of it. In this case, we must substi-
tute in equation (1) instead R (r) of the usual average density R (r - oo) = R,. In the case when the distance
from the center of a given atom is too small (less than the so-called atomic diameter), then no nucleus of the
particle will fall into the spherical layer. The function R(r) has an oscillating character at small distances 7 .
It is this behavior that corresponds to the structure of the melt, since some ordering features inherent in the
crystal from which the melt was formed should appear in them. Thus, there must exist a pre-important dis-
tance between nearest neighbors, analogous to the interatomic distance in the crystal, the average number of
nearest neighbors, analogous to the coordination number in the lattice, and so on. The existence of ordering
elements in the melt, which is ultimately due to the intrinsic volume of the molecules and the features of the
interatomic potential, is determined by the term short-range order.

If we were to consider an ideal gas, then instead of an oscillating curve, the radial distribution function

R(r) would be constant and equal to the average density R,, since the particles of an ideal gas do not inter-
act and have zero intrinsic volume. For example, the radial distribution function for liquid tin is shown in
Figure.

Note that in addition to the function R (r) itself, the value is often considered:
di
M =4mr’R(r).
dr

A parabola is a graph 4R to which it asymptotically tends Z—n at large distances 7 . Vertical lines
r

describe the case of a crystal when the distances between atoms are fixed, and the height of the line is pro-
portional to the number of neighbors in the corresponding coordination sphere. These results can be repre-
sented (table 1) in such a way that when the crystal melts, the peaks are blurred, forming the oscillating func-

tion Z—n depicted in Figure.
r

The causes of oscillations at small distances can be treated as the most probable arrangement of atoms
in melts with increasing 7 .
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Earlier, we defined a pair function of the radial distribution R(r) that describes the average location of

the melt particles around some arbitrary atom. Now, this need to be generalized to the case when we are in-
terested in the relative positions of the number of atoms. To do this, we choose a volume d7 in the melt.
Let the average number of particles in this atom be equal to dn = R dV, where R, is the number density of

particles (the number of particles per unit volume). If we assume that dV it is sufficiently small, it dn will
be much less than unity. Because of this, the product R dV can be considered as the probability of detecting

a melt particle in a volume dV : dW, = R, dV,.

41’ R
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Figure. The curve of the atomic distribution for tin

Table
Curve of the atomic distribution for tin

r 21 | 23 ] 25 3 35 4 4 5 53 1 55 6 6.5 7 7.5 8
477°R | 03 0 0.5 5 9.8 6 58 | 115 127 | 13 18 | 201|188 | 21 | 28

Let us select in the melt the following volume elements 4V, and dV, near points with radius vectors
#,1,. Let us determine the probability that in volumes 4V, and dV, simultaneously there will be two parti-
cles. Then this probability should be proportional to the volumes themselves, that is:

dlesz(rl,rz)dVlde, 2)

where R, (7;,r,)— the function is the so-called binary correlation function.

If we assume that the volumes d¥, and dV, are far from each other, then the probabilities of particles en-

tering these volumes become independent and, by the theorem on multiplication of probabilities, we can write:
dw,, = dW,dW, = R;dV,dV,.

It can be seen from the relations (2) that for large values of |r1 - r2| it follows that R, (7,7 )=R;., simi-
larly to what was said above, we can introduce the probability dW,, , that there will be one particle in the
volumes dV,,dV,,....dV, . Define dW,, , itas follows:

AWy, =R, (1is1seer, ) AV A,V (3)

The function of the coordinates of all n — particles R introduced by Eq. (3) is called the correlation

function of the »n order. As before, as the distance between each two volumes increases, the probabilities of
finding particles in each volume become independent, that is, when it is obvious |r,. —rk| that It is necessary

R, =R,. To emphasize that a particular case of a correlation function of the n order is the so-called ternary

correlation function R, (7,7,7).
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In addition, we can establish a connection between the binary correlation function and the pair function
R(r) of the radial distribution. The probability of finding two particles in volumes ¥, and dV, can be rep-

resented as a product of two probabilities: first, that there is one particle W, in the volume dV, and, secondly,
n— r2| from the first particle. Thus, dW, this is the probability
of the second event, provided that the first has already occurred:
W, =R(} ).
The probabilities d can be normalized as follows:

[aw, = [Rav, =Ry =N,
4

that the second particle d¥, is at a distance

where N is the total number of melt particles.
Jaw, = [R,(r.r,)avav, = N(N -1),

and correspondingly:

N!
dW, = ———.
(N - n)!
In practice, for convenience of calculations, it is expedient to reformulate the correlation functions and
probabilities so that the former become dimensionless and that the norm integrals are equal to unity. To this
end, we introduce new probabilities for a given configuration of n-particles of the melt:

aw, =%E1(rl,rz,...,1;1)dlfldV2...an, 4)
where dV, =dx,dydz,,  x,y,,z, arethe coordinates of that particle.
Naturally, the correlation function defined in this way is dimensionless. Further, it will be possible to
require that the new probability be normalized to unity Id W, =1,, thatis,

1
Vn

_[F (Futysesr, ) AV, AV,..dV, =1. (5)
From equations (4) and (5) it is clear that:

do, =Lde.
(N—n)!

The last equation suggests a reliable interpretation of probabilities dw,. Probability dW, refers to a

n

given volume configuration, when it is not essential which particles occupy these volumes dV,,dV,,...,dV, .

The volume dV, refers to any of the N particles, and the volume dV, refers to any of the remaining particles
N!

(N-n)!

(3) and (5), we find the correlation between the correlation functions R, and F, :

N —1, and so on. In view of this, an additional multiplier appears Taking into account relations

N! 1
(N=n)tV"
We note that the correlation functions of the two successive orders are related to each other by the rela-

tion (6), which follows from the definition of probability [3]. We now introduce the total potential energy of
the system, which depends on the coordinates of all the melt particles. Because of this, according to Boltz-

R, (Ksrysennty) = E,(1s1yseens, ). (6)

mann-Gibbs statistics, the probability of this particle configuration is proportional to the factor exp[—k%}.

Then:

U(rl,rz,...,rn)

aw, = Aexp{— T

}dVldIQ...an.
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Thus, the correlation function F, can be determined from the potential energy of the system. Then we
can construct recurrence relations for which allow us to find correlation functions F, of lower orders:
Ulr,r,,...,r
Fy(Korysenty) = VNAexp{—w}.

The calculation of these integrals at the present time can be easily carried out so far only for gases in
which the particle density is small. A direct determination of the correlation functions of the melt with the
help of statistical mechanics is quite difficult to perform. In such cases, one resorts to numerical methods,
such as the Monte Carlo method, using the capabilities of computer technology. Suppose that we are inter-

ested in the mean value of some extensive physical property of the melt M, (;,r,...,r, ), determined by the

mutual arrangement of a group of n-particles. In different areas of the melt, the configurations will differ
from each other, so that the property values M, will oscillate around this mean. Since the probability of the

arrangement of particles in the configuration dW, is described by the correlation function F,(7,n,...,r,),

the averaging of the quantity is performed by integrating M, with the weight F :
_ 1
M, =J-Mn(r1,r2,...,1;,)de :WJ.M” (Futyoees ) (RoByseesr, )aAV,AV,..dV, = 1.
N!

(N—n)!n!'

In a melt containing N particles, the number of different groups of n-particles is equal

Therefore, the value of the property M, for the entire volume of the melt will be:

1 N!
=——————|M (5.15,..0, )F, (1, 1y, )AV,AV,..AV .
Vn (N—n)‘}’l‘J. n(l 2 )F(l 2 ) 1 2
Most often, properties are considered that depend either on the coordinate of one particle or on the mu-
tual distances of pairs of particles, that is, properties determined by pair interactions. In the first case:

H1,(N) =2 [, () F ()7,

M,(N)

R =%, R, =1, therefore:

It follows from equation (6) that F, ()= % , R
— N
M,(N) =V—le (r)av.
For a property defined by pair interactions, we can write:

N(N-1

M,(N)= e )IMz(q,r2)F2(q,r2)deI/2.

After some transformations we have:
— R
Mz(N)=7°IMz(w2)R (I, = r[)avav,.
Denoting |r2 - r1| by 7, we write:
M,(N)= 2TCNJ.M2 (r)R(r)rdr. (7)
0

An important example of the application of equation (7) is the computation of the total energy of the
melt in the approximation, when the potential energy of the system can be represented as the sum of the en-

ergies of the pair interaction of the particles. If the pair potential is denoted by U ( r) and take into account

that the average kinetic energy of a monatomic particle is equal to %kT , then the following relationship

holds for the total energy:

U=%NkT+2nNJ.U(r)R(r)r2dr.
0
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The results described above show that knowledge of correlation functions F,F,,...,F, is necessary for

the calculation of a number of thermodynamic properties of the melt. It will be shown below that the kinetic
properties of melts in a number of cases are expressed in terms of integrals containing different correlation
functions [4-10]. Therefore, it is expedient to set the problem of calculating correlation functions of lower

orders through known potentials of interatomic interaction U (r).

This problem was solved by a number of scientists: M. Born, G. Green, J. Kirkwood, N.N. Bogolyubov
and others. As a result, rather complicated integro-differential equations connecting the functions F and F

v v
Fi(rl):ﬁRl(rl):NRO =1;
V? V?
Fz(mz)=mRz(nsrz)zFRz(mz);
V3 V3
F(rn.1)= N(N_l)(N_z)Rg(rprz,rg)zﬁRz(wﬁ)-

Now the Bogolyubov-Born-Green equation for the index takes the form:
KTV R, (r1,15) + Ry (11,13) VU ([ = 1))+ [ VU (5 = 1| )R (1,73, )dV, = 0.

Here we took into account what is the interaction energy of two particles, that is. Dividing this equation
by a function R, (7,7, ), we obtain the equation in the form proposed by M. Born and G. Green:
R, (r.1y.13)

R, (1.1)

The equations obtained are rather complicated and a general method for their solution is not yet availa-

ble. Successful results were obtained only for the simplest problems: for a system with low density (i.c., for a

real gas), for a system of particles interacting according to the Coulomb law and for some other cases. A suf-
ficiently exact solution can be obtained if a function F; can be expressed in terms of functions F, with

—kTV\R, (r,1) = VU (Jri =)+ [ VU (Jr = 15]) av,. (8)

smaller numbers (n -5 ) . Then it would be possible to «break off» the infinite system of equations (8) and

find correlation functions, for example, by the method of successive approximations [5, 6]. One of the meth-
ods of approximate integration of the Bogolyubov-Born-Green equations was proposed by J. Kirkwood [7].
Taking into account the superposition approximation [7], the Bogolyubov-Born-Green equation (8) takes the
form:

kTInR (r)+U(r)+

271;\]I[R(p)—l]{jE(x)xdx}pdp 0.

r

The solutions of this Bogolyubov-Born-Green equation for various particular cases were obtained by the
method of successive approximations with the help of electronic computers. A new method for analyzing equa-
tions for correlation functions was proposed [7]. Without dwelling on it in essence, we note that the Percus-
Yevick method [8] leads to the following integro-differential equation for the radial distribution function:

exp[U(r) /KT R (r)=1—%Hexp{ljk(]’:)}—I}R(r')[Uﬂr—r'MdV’

which is the basis for calculating the radial distribution function of atoms in the melt.
The resulting equation describes the state of the melt and can describe its dynamics from a microscopic
point of view. In this case, the potential energy of the particles depends on pair potentials of the type

N
U(rl,rz,...,rN) = ZU(|1§ —Vk|).

i<k
Then, using the results of [8], we can write the expressions for the shear viscosity and of bulk viscosity:

4 1
W, =p0kBT[1+EI1 +Elz};

3 2 1
Ly, :pOkBT|:g_§II +§]2:|T—k0’[,
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where the integrals /,,7,, which depend on the paired potential U (r) and the radial distribution function

R(r):
2mp, |
I, :—1;?0 ! R(r)r*V, U (r)dr;

I, =—2chF;° I R(r)r*VU(r)dr.
sl 9

Then, using known functions U ( r) , R (r) it is possible to calculate all the necessary values of the shear

and bulk viscosities that appear in the equations of hydrodynamics.

Based on the analysis of the existing methods of building potential functions of inter-particle interaction
in melts be obtained design formulae of atoms radial distribution functions in the system with the aim of
obtaining basic data for building models of inter-particle interaction.

The mathematical models and methods developed in the work offer the approach to the solution of a
fundamental problem of a method of molecular dynamics to the adequate description of potential of inter-
particle interaction used in molten systems.

Besides, to analyze influence of the mechanism of inter-particle interaction in melts and the system
properties that gives the chance to penetrate more deeply into the nature of the molten systems and to use this
data in developing new technologies for metallurgical repartitions.
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C.II. Kaxsikenona, C.H. llanrakos, /1. bemomecthsiii, b.P. Hycinbekos

Koppeasauusiibik GyHKUMAIAPAbI AHBIKTAY YIIIH PeKYPPEHTTIK KaTbIHACTAP

Imki yiikenicin 6acynan TyslHIaraH OajKbIMa OOJIIEKTEp/iH KO3FalbIChl MEH OJIApABIH ©3apa iC-KUMbLIBIH
Oacy KYLIHIH TYTKbID KO3FaJbiC METANbIK OaJKbIMaHBIH MAaTEMATHUKAJbIK CHUIATTAMACBIHBIH HEri3ri
MaceJienepi KapacThIpblIFaH. 3epTTeYyAiH KaHAIBIFbl KOPPEISLUHSIBIK ()yHKIUSIHBIH TYTKBIPJIBIFBl KBAHTTBIK
CTAaTUCTHKANBIK OMiCi TYPFBICBIHAH KapacThIPHUIFAH/ABIFBIHAA OONBIT  TaObUIambl.  KOppersimusiibiK
GbyHKIMsUIap MeH paauanabl GyHKuusuiapasl 0eily apachlHIarbl e3apa Oaiinaneic opHaThUIAbl. COHBIMEH
KaTap OaJKbIMa arbIMBIHBIH KJIACTEPJiK TEOPHACHI HETi3iHAE TYTKBIPJIBIK IIEH aToOMapajblK [OTCHIHAT
apacelHIa fAa GaiaHbIC OpHATBUIABL TabbUTFaH KaThIHACTAp Ke3 KeNreH (U3MKAIBIK MapameTpiepiin
opTalla MOHIH aHBIKTayFa MyMKiH/iK Oepai. JepOec xaraaiiia bIFbICY MEH KOJIEM/IIK TYTKBIPIBIKTBI, COHIal-
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aK NMOTEHIUAJIbIK SHEPrus XKyiteci OeuleKTepiH e3apa KO3Falblc 0aiIaHbICHIHBIH JKYITBIK SHEPIHACBIHBIH
KOCBIHIBICHI TypiHae Oepinai. DU3HKaNBIK MapaMeTpliepAiH OpTalia MOHIH aHBIKTay YIIiH €Ki OeIIeKTi
¢byukumsutapael - paguangel - 6emy  okerkimikri.  Jlepbec  karmaiima  OaiKBITBUIFAH — METaJJapIIblH
KO3 QUIUEHTTEPIH aybICTBIpY OONBIN TaObUIaAbl. YII HEMEce OJaH Ja KONl PETTI KOPPEISIHsIIBIK
(YHKIUSUIIApABI €CeNTey PEeKypPeHTTi (hopMyITanapsl apKbUIBI JKYPri3iii.

Kinm ce30ep: meTanmplK OalKbITy, THAPOAMHAMUKA TEHJEYJEpl, KOPPEeISIIIUIBIK (yHKIMsIAp, KBAHTTHIK
MOTCHIUAIAAP, KBAHTTHIK-CTATHCTHKAIBIK, MaTEMaTHKAIBIK MOJEIbCY, KOMIIBIOTEPIIK MOJENIBALY,
TBIFBI3JBIK ()YHKIIMOHAIIBI.

C.III. Kaxukenona, C.H. Illanrakos, /[. bemomectnsriii, b.P. Hycyn6ekos

PexkyppeHTHBIC COOTHOIICHHUS JJIS ONpeIe/IeHUsl KOPPeJIAUUOHHBIX (PYHKIUMN

PaccmoTpena ocHoBHast TpobiaeMa MAaTeMaTHYECKOTO OMHMCAHUS BS3KOTO JBIDKCHUSI METaJUIMUECKOTO pac-
IUIaBa, COMPOBOXKAAIOMIETOCS IMPEOJOJICHUEM BHYTPEHHETO TPEHUs, OOYCIIOBIEHHOTO IBM)KEHHEM YaCTHI
paciiaBa U IpeoAoJIeHUEM CUI UX B3auMoneiictBus. HoBusHa ucciaeqoBaHuil 3aKiI04aeTcs B TOM, 4TO KOp-
peTALHOHHBIE QYHKIMU BSI3KOCTU OOOCHOBAaHBI C TOYKH 3PEHHSI KBAHTOBO-CTATHCTHYECKOTO METoja. YcCTa-
HOBJIGHa B3aUMOCBSI3b KOPPENSLMOHHBIX ~QYHKIMI ¢ (QYHKUMSAMH —paJUaIbHOTO  PacIpeeseHus.
Ha ocHoBaHMM KJacTepHOM TEOpUHM TEUEHMS pacliaBa YCTAaHOBIEHA CBSI3b MEXOY BSI3KOCTHIO
U MEXaTOMHBIM NoTeHnuanoM. HaliieHHbIe COOTHOIIEHHs MO3BOJISIOT ONpPEASTUTh CPEJHUE 3HAUEHHUS JIIO-
OBbIX (pM3NYECKUX ITapaMEeTPOB, B YACTHOCTH 3HAUCHUS CIBUTOBOI M 00BbEMHOHU BSI3KOCTEH, a TaKXkKe MpejcTa-
BUTb NOTEHLIUAIBHYIO 3HEPIHIO CHCTEMBI B BUJI€ CyMMBbI 3HEPIHi IapHOTO B3aUMOJEHUCTBUA YacTull. JIByX-
YacTHYHBIC (QYHKIIMH PaJHaIbHOTO pacHpeieNIeH st JOCTaTOUHBI IS ONpeeNIeH s CpeTHUX 3HaueHuH (u3n-
YECKHUX ITapaMeTPOB, B YaCTHOCTH K03()(PHUIMEHTOB IepeHoca pacIIaBICHHBIX METAJUIOB. YUeT Tpex 1 Ooiee
MOPSAIKOB KOPPEJISILMOHHBIX QYHKIMIT MOXKHO IPOU3BECTH TI0 PEKYPPEHTHBIM (popMyIIaM.

Knrouesvie cnosa: Metamnm4eckuii paciias, ypaBHEHUs TMAPOJUHAMUKH, KOPPEISLMOHHbIE (YHKIMHU, KBaH-
TOBBIE TIOTEHIIUAJIbI, KBAHTOBO-CTATUCTUYECKUH, MaTEMAaTHYECKOE MOAEIUPOBAHNE, KOMITBIOTEPHOE MOJIEIH-
poBaHHe, (YHKIHOHA MIIOTHOCTH.
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